Introduction to R, RStudio

Data Science Team

Introduction

In this class, we will be using the R language (https://www.r-project.org) heavily in class notes, examples
and lab exercises. R is free and you can install it like any other program on your computer.

1. Go to the CRAN (https://cloud.r-project.org/) website and download it for your Mac or PC. (We
assume no one is using Linux; if you are that advanced, then you already know what to do!)

2. Install the free version of the RStudio (https://www.rstudio.com/products/rstudio/download/)
Desktop Software.

3. Go through our install instructions (http://web.stanford.edu/class/stats101/install.html) to install the
background libraries this course uses.

RStudio makes it very easy to learn and use R, providing a number of useful features that many find
indispensable.

About the R language, briefly

If you are used to traditional computing languages, you will find R different in many ways. The basic ideas
behind R date back four decades and have a strong flavor of exploration: one can grapple with data,
understand its structure, visualize it, summarize it etc. Therefore, a common way people use R is by typing
a command and immediately see the results. (Of course, scripts can also be written and fed to R for batch
execution.)

The core of R itself is reasonably small, but over time, it has also become a vehicle for researchers to
disseminate new tools and methodologies via packages. That is one reason for R’s popularity: there are
thousands of packages (10,300+ as of this writing, not to mention over 1,000 for genomic analysis that are
part of BioConductor) that extend R in many useful ways.

The CRAN (https://cloud.r-project.org) website is something you will consult frequently for both the
software, documentation and packages others have developed.

RStudio

We can only cover some important aspects of RStudio here. There are a number of resources online,
including Youtube videos that you can consult outside of class.

When you start RStudio, you will get a view similar to what is shown below with perhaps slight differences.

https://www.r-project.org/
https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/
http://web.stanford.edu/class/stats101/install.html
https://cloud.r-project.org/

@ RStudio File Edit Code View Plots Session Bulld Debug Profile Tools Window Help

o0 RStudio
Q- -8 3 v Addins ~ K project: (None) ~
] Untitled1 - Environment History =
%) Source on Save A Z~ #Run o9 Source ~ 8 #*Import Dataset = ¥ Ust ~
1 7} Global Environment ~

Tabs for switching views Workspace items

Editor window — —

— T ——

Files Plots Packages Help Viewer =]

O New Folder © Delete = Rename ¥ More ~

4 Home
A Name Size Modified
J amaconda2
J audaciv i i 1 1
udachy Files in working directory
I aws
1:1 (Top L 0 * R Scr ¢
op Leve S | backup
Console =] bar.txt 1.3 K8 Oct 16, 2015, 2:37 PM
A OVEABAUL J.Ji4 (AVAUSUUSAL) == DUy AN AUNL Bass R
Copyright (C) 2016 The R Foundation for Statistical Computing) bar.txt~ 2e Oct 16, 2015, 2:35 PM
Platform: x86_64-applo-darwinll.4.0 (64-bit) | BDS
&l bin
R is froe software and comes with ABSOLUTELY NO WARRANTY. R Console '
You are welcome to redistribute it uader certain conditions. | biographies
Type ‘licease()’ or ‘licemce()’ for distridution details. - el | Biostat
ket
Natural language support but running in an English locale) BitBucke
books
R is a collaborative project with masy contributors. | Box Files Backup (not synced)
Type ‘contributors()’ for more information and Box
‘citation()’ on how to cite R or R packages im publications.) X Jync
I brad
Type ‘demo()’' for some demos, ‘help()’ for on-lime help, or | CancerCenter
‘holp.start()’ for am NTML browser isterface to help. P 2 Mar 10. 2015 o—
Type 'q()’ to quit R.) catn.R 3B ar 10, 2015, 1:0
I Charles
>| | computing

One can type commands directly into the console window and see results. For example, go ahead and
type 1+1 to use R as a calculator and see the result. However, one often wants to write a sequence of
commands, execute them and possibly save the commands to run them again another time. That’s what
the editor window is for. You can type a series of commands into the editor window and RStudio will offer
to save them when you quit, and bring them back when you restart RStudio.

If you type
1+1

2 * x

z <- (X + V)

ke
Il

=
Il

into the editor window, you can press the rRun arrow shown and execute each line in the R console, one
by one. The figure below shows this and as new variables are created, the workspace panel displays them.

Cl-&2- B B ~ Addins ~ & Project: (None) ~

2] Untitled1* -] Environment History =
81 B | sourceonsave Q /- “#Run % 9 Source ~ ? [_PimportDataset + List ~
1 z=14+1 7} Clobal Environment ~
egr=2 = Values
3 z<-x+y
4 x 2
Y B
= 6

N

Variables appear

Execute line by line

Files Plots Packages Help Viewer p—
Qi New Folder © Delete () Rename ¥ More ~

42 Home
A Name Size Modified
J anaconda2
J audacity
aws
4:1 (Top Leve * RSCriot S backup
Console =0 bar.txt 1.3 K8 Oct 16, 2015, 2:37 PM
AUN LY WUAUUANS LU AUUABLAAVULY AL UHUUL CUALOAN LUMUACAULS .)
Typo 'licemse()’ or "licence()' for distribution details. J bar.txt~ 28 Oct 16, 2015, 2:35 PM
J BDS
Natural language support but running in an English locale bin
J/ blographies

R is a collaborative project with many coantributors.
Type 'contributors()’ for more information and CJ Biostat
‘citation()’ on how to cite R or R packages in publications.

_J BitBucket
Type 'demo()’ for some demos, 'help()’ for on-line help, or books
‘Belp.start()’ for am NTML browser interface to help. Box Files Backup (not synced)
pe 'q()’ to quit R.
Ty, Box Sync
> 141 brad
(1) 2 J CancerCenter
>x=1+1 P 01 5 1
>y=2*x 2. catn.R 838 Mar 10, 2015, 1:09 PM
>z <=-x4+y J Charles
- 1 computing

Should | use = or <- for assignment?

In R, both = and <- can be used for assigning a value to variables. The various instructors in this class
have personal preferences and so you will see both used.

Help

A lot of help is available in RStudio in the help tab that you should feel free to investigate. We merely point
out a few.

e0e RStudio

-~ l B * Addins ~ L project: (None) ~
2 Untitled1* =] Environment History = ()
(] I Source on Save A Z - FRun o9 Source ~ P | #Import Dataset ~ ¥ Ust -
1 x=1+1) Global Environment ~
2= Values
3 z<-x+y
4 x 2
Y 4
B 6

Searchable Help

ManualS fro CRAN Files Plots Packages HMelp Viewer =]
/‘\ mean
Home ~
R R Resources © RStudio
DES
4:1 (Top Level) Script CRAN Task Views RStudio Cheat Sheets
— St
Console
AYPU AAUNMBNL) VA AANGMUNL) AV UABLLAMWLAUN UWLaAAS.

Natural lamguage support but runaing in an English locale

R is a collaborative project with many contributors. Manuals
Type ‘contributors()’ for more information and
‘citation()’ on how to cite R or R packages in publications. An Ir juct toR The R Language Definit

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or
‘help.start()’ for am NTML browser interface to help.
TYpe "q0)" to quit R. Reference

> 1+1

(2 Installed Packages @ —— = m= Seard

>x=1+1
Miscellaneous A -
>y=2*x Miscellaneous Material

>z <= x4y

When anyone installs R, there is a set of recommended packages that is always installed. So your installed
packages will reflect that. As we proceed, you will have to install many packages and that list will, of
course, grow.

Installing Packages

There are world-wide R package repositories or Comprehensive R Archive Network (CRAN) sites that allow
packages to be downloaded and installed. You almost never have to directly work with them since RStudio
makes it easy to install the packages as shown in the figure below, where we have clicked on the
Packages tab and clicked on the Install button. Note how as you type the name of a package, you get
auto-completion. (In fact, RStudio provides auto-completion even as you type R commands, showing you
various options you can use for the commands!)

Addins ~
© Untitled1* x
& | Source on Save
x=1+1

1

2 y="2*x
3 z<-x+y
4

Q /-

4:1 (Top Level *

Console
Type "licemse() or ‘licence() tor distribution details.

Natural language support but running in an Baglish locale

R is a collaborative project with many contributors.
Type ‘contributors()’ for more information and
‘eitation()’ om how to cite R or R packages in publications.

* for some demos, ‘help()’' for om-line help, or
start()’ for an HTML browser interface to help.
Type ‘q()’ to quit R.

> 141

) 2

>x=1+1

>y=2+*x

>3 <-x+y

Making ‘packages.html’ ... done
>

Activity

RStudio

= Environment History

~% Run 5% | _#Source ~ - 4

) Global Environment ~

[_#import Dataset ~ ¥

Values

b 4
=

& Project: (None) ~

-

List = S

2 Install Packages

4

6 Install from: ? Configuring Repositories
Repository (CRAN)

Packages (separate multiple with space or comma):

dpl

| dplR 1’ra'y

! dpIRCON 1ovorks/R 1
dplyr

V'Install dependencies

«/Versions/3.3/R: N B

Files .ots Packages 1

Ol mstall

Name

System Library

R Script *

acepack

arules
assertr
assertthat
ASSISTant

base64enc
BH

bhvec
bitops
boilerpipeR
bookdown
boot

brew
broom

caTools

cccp
chron

@ upcate

l Install Cancel

Description Version |
ace() and avas() for selecting regression 1.3-33
transformations

Mining Association Rules and Frequent itemsets 1.4-2

Assertive Programming for R Analysis Pipelines 1.0.0

Easy pre and post assertions. 0.1
Adaptive Subgroup Selection In Group 1.2-5
Sequential Trials

Tools for base64 encoding 0.1-3
Boost C++ Header Files 1.60.0-2
What the Package Does (one line, title case) 0.0.0.9000
Bitwise Operations 1.0-6
Interface to the Bollerpipe Java Library 1.3
Authoring Books with R Markdown 0.1.5
Bootstrap Functions (Originally by Angelo Canty 1.3-18
for 5)

Templating Framework for Report Generation 1.0-6
Convert Statistical Analysis Objects into Tidy 0.4.1
Data Frames

Tools: moving window statistics, GIF, Base64, 1.17.1
ROC AUC, etc

Cone Constrained Convex Problems 0.2-4
Chronological Objects which can Handle Dates 2.3-47

and Times

dplyr should appear on the lower right (install the package it if not). Press all the buttons necessary to
make the install happen. After you have done the installation, go back to the Help tab where you can click
on the Installed Packages link shown in the figure below.

e0e RStudio
Q_. -

-0 2 » .~ Addins ~ K project: (None) ~
97 Untitled1* x =] Environment History =)
) k) (sourceonsave Q / - 1] SRun | 5% | Source ~ 2 E _2mportDataset - ¥ ust - (&
1 x=1+1) Global Environment ~ A
: : :_z".', Values
4 x 2
Y 4
z 6

Searchable Help

Manuals from CRAN g N | g -

=
| — — P) O S A 4 mean| o &
Home ~
(R R Resources @ Rstudio
Learning R Online RStudio IDE Support
4:1 (Top Level) = CRAN Task Views RStudio Cheat Sheets
i R on StackOverflow RStudio Tip of the Day
AYPU AAUGGBEL) VA AAUGMUGL] AVA UABLEAUMLAUN UWLaiis. Getting Help with R RStudio Packages

Natural lamguage support but runaing in an English locale RStudio Products

R is a collaborative project with many comtributors. Manuals

Type ‘contributors()’ for more information and

‘citation()’' on how to cite R or R packages in publications. An Introduction to R The R Language Definition
Writing R Extensions R Installation and Administration

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or R Data Import/Export R Internals

‘help.start()’ for anm NTML browser interface to help.

Type ‘q()’ to quit R. Reference

> 141
1 2 |nsta”ed Packages —————_p Packages Search Engine & Keywords

>x=1+1
Miscellaneous Material

>y=2*x
> <~ x+y -
Making ‘packages.html’ ... dome About R Authors Resources

> License FAQ Thanks

Navigate to the dplyr link and click on it so that you get to the help on the dplyr package. Two kinds of
help are displayed: Documentation and Help Pages.

Files Plots Packages Help Viewer p—

@ >R S A mean @

R: A Grammar of Data Manipulation ~

A Grammar of Data Manipulation

DO

Documentation for package ‘dplyr’ version 0.5.0

e DESCRIPTION file.
e User guides, package vignettes and other documentation.

Help Pages

ABCDEFGIJLMNOPRSTUV

dplyr-package dplyr: a grammar of data manipulation

—~A--

add_rownames Convert row names to an explicit variable.
all.equal.tbl_df Flexible equality comparison for data frames.
all_equal Flexible equality comparison for data frames.
anti_join Join two tbls together.

anti_join.tbl_df Join data frame tbls.

anti_join.tbl_lazy Join sql tbls.

The Help Pages document facilities that the package dplyr in detail. The Documentation is often more
useful, because they can contain user guides and vignettes that are very useful for people learning about
the package. So click on the User guides...

Files Plots Packages Help Viewer

@ DS a mean G
R: Vignettes and other documentation ~
Vignettes and other documentation
D
: [1
Vignettes from package 'dplyr
dplyr::data_frames Data frame performance HTML source R code
dplyr::databases Databases HTML source R code
dplyr::hybrid- Hybrid evaluation HTML source R code
evaluation
dplyr:introduction Introduction to dplyr HTML source R code
dplyr::new-sgl- Adding a new SQL backend HTML source R code
backend
dplyr::nse Non-standard evaluation HTML source R code
dplyr:itwo-table Two-table verbs HTML source R code
dplyr:window- Window functions and grouped mutate/fiter = HTML source R code
functions

Click on the Introduction to dplyr vignette to see the vignette.

Files Plots Packages Help Viewer |

& D B 5 | mean (e

Introduction to dplyr ~

Introduction to dplyr

2016-06-23

When working with data you must:
o Figure out what you want to do.
o Describe those tasks in the form of a computer program.

o Execute the program.

The dplyr package makes these steps fast and easy:

o By constraining your options, it simplifies how you can think about
common data manipulation tasks.

o |t provides simple “verbs”, functions that correspond to the most
common data manipulation tasks, to help you translate those thoughts
into code.

o It uses efficient data storage backends, so you spend less time waiting
for the computer.

This document introduces you to dplyr’s basic set of tools, and shows you
how to apply them to data frames. Other vignettes provide more details on
specific topics:

o databases: Besides in-memory data frames, dplyr also connects to
out-of-memory, remote databases. And by translating your R code into
the appropriate SQL, it allows you to work with both types of data

Limina tha anma nnt AF tanln

Vignettes, when present, are indispenable in learning about a package. Not all packages provide vignettes,
however!

Activity (to be done outside class)

This needs to be done only once for the entire course.
source('https://www.stanford.edu/class/statsl101/INSTALL.R")

A transcript of what happens is shown below. In the case below, the packages were already mostly
installed and so there was not much activity. But a typical fresh install will take anywhere from 5 to 10
minutes. A good time for a cuppa.

Workspace

As you use RStudio more, you will find yourself creating variables (like x, y, z above, except far more
valuable) and it is desirable to save them. When you quit RStudio, you will be given a choice of saving your
workspace. It is worth doing so if you have important things created.

RStudio also a notion of projects and so you can keep project workspaces separate. Each such project
can be designated a working folder so that x from one workspace does not clobber x from another. You
can explore these options via the File menu.

Later, we will see facilities to selectively save and restore some specified objects in our workspace, but not
all of them.

The R Language, in some detail

Instead of giving a deep dive into R, we focus on details that we expect to be of immediate use, filling in
others as needed.

Like other computer languages, R has ways of naming things in the language. Above, we used x as a
name for the value 1 and y for the value 2. The names have to follow some rules. It is sufficient to be
aware that they must start with an alphabetic character and can contain periods and underscores. Also, for
obvious reasons, space is not permitted. (It is common to see names for variables such as

male.cholesterol Or male cholesteroll)
Nomenclature: R users tend to use the word objects to refer to R variables, functions, datasets, etc.

In R, all the action occurs via functions. You can think of functions as code that takes some inputs and
produces some output. Even something as simple as

[1]1 3

is computed via functions. The rich set of functions in R and the thousands of R packages make it a very
powerful tool for data science.

There are various types of data structures in R.

Vectors and Indexing

R can handle both numeric and non-numeric data. Non-numeric data occurs commonly in the real world
and sometimes needs to be cleaned up and converted to numeric values.

X <- c¢(1.0, 2)

X
[1]1 1 2
typeof (x)

[1] "double"

Y <— C("abC", Ildll, Ilell, lfghl)
y

[l] "abC" Ildll Ilell Ilfghll

typeof (y)

[1] "character"

y %in% letters

[1] FALSE TRUE TRUE FALSE

sum(y %in% letters)

[1] 2
What is sum(y %$in% letters) and what does it represent?

z <- 1:5

z

[1]1 1 2 3 4 5

typeof(z)

[1] "integer"

w <- c(TRUE, FALSE, TRUE, TRUE)
w

[1] TRUE FALSE TRUE TRUE

typeof (w)

[1] "logical"

sum(w)

[1]1 3

The ¢ stands for the combine function and it creates a vector of two numbers for x and a vector of four
strings for y . Note how both single and double quotes may be used (useful when we have quotes within
strings). For z we use a shortcut 1:5 for creating a sequence of integers from 1 to 5. And finally, w is a

logical vector; R recognizes the symbols TRUE and FALSE as special symbols; you cannot have a
variable named TRUE for example! (The typeof function is useful to understand basic underlying types.)

Character data can be treated differently in R, depending on the context. An important notion is that of a
factor, which is basically a way of stating that variable has categorical semantics. Declaring a variable as
factor causes R to treat it in differently in certain contexts, particularly model fitting. To create a factor, one
uses the factor function.

gender <- factor(c("Male", "Female", "Female", "Male"))
gender

[1] Male Female Female Male
Levels: Female Male

Factors always print in a special way; above, there are two categories or Levels for gender namely
Female and Male . The variable gender itself has four values the first and last being Male . The unique

categories represented by a factor variable can be queried using the levels function:

levels(gender)

[1] "Female" "Male"

sum(gender == "male")
[1]1 O

sum(gender == "Male")
[1] 2
table(gender)

gender

Female Male

2 2

By default, the categories appear in lexicographic order but can be forced to be any other order.

Indexing

Often, one needs to access a part, or a subset or a slice of a vector. This is done by specifying indices
indexing construct

The first element; indexing begins from 1
x[1]

[1] 1

The third element of y
y[3]

[1] ueu

The second to fourth element of z
z[2:4]

[1]1 2 3 4

The first and last element of y
ylc(1l, length(y))]

[1] "abc" "fgh"

The first and last gender
gender[c(1l, length(gender))]

[1] Male Male
Levels: Female Male

Note the use of the function length that returns the length of y (4 for us).

Nothing stops one from combining types.

Combine x and y into one
c(x, ¥)

[1] Illll Il2ll llabcll lldll llell vlfghll

Note, however, that the last combine operation silently coerces everything to strings. This is because
vectors contain homogeneous elements. That seems limiting, because sometimes you may have both
types of data and you don’t want to be converting things back and forth.

Lists

Lists are versatile data structures that can grow or shrink and contain heterogeneous data. They are
constructed using the 1ist function:

aList <- 1list(1, 2, list(1l, 2, "abc"))
aList

[[1]]

[1]1 1

##

[[2]]

[1] 2

##

[[3]]

[[3110[1]]
[1]1 1

##

[[3110[2]]
[1] 2

##

[[3110[3]]
[1] "abc"

Note how a list prints differently. Individual elements of the list, unlike the vectors above, are accessed
using the double bracket notation, suggested by the printing. Note also that there is no coercion of types.

The second element
aList[[2]]

[1] 2

The third element, which is itself a list!
aList[[3]]

[[11]

(11 1

##

[[2]]

[1] 2

##

[[31]

[1] "abc"

The second element of the third element
aList([[3]11[[2]]

[1] 2
With lists, the single bracket indexing behaves differently from double bracket indexing.

aList[[2]]

[1] 2

aList[2]

[[1]1]
[1] 2

The difference is clear from the way each is printed: the former is just the second element of the list
whereas the latter is another list whose second element is from the original list.

The rule is simple: single bracket indexing returns the same type of object.

typeof (aList[[2]])

[1] "double"

typeof (aList[2])

[1] "list"
Negative indexing is a convenient way to drop some elements from a vector.

Drop the first element of x
x[-1]

[1] 2

Drop the last element of y
yl[-length(y)]

[l] "abC" Ildll Ilell

Drop the first and last element of aList
aList[c(-1, -length(aList))]

[[1]]
[1] 2

Mixing of negative and non-negative indices is not permitted.

This results in an error
ylc(-1, 3:4)]

Error in y[c(-1, 3:4)]: only 0's may be mixed with negative subscripts

R also allows logical indexing:

Select y elements where w is TRUE
ylw]

[1] llabcll llell "fgh"

will select the first, third and fourth elements and drop the rest. Selecting elements based on conditions is
very useful and we will see further examples.

Missing and null values

R has a notion of a missing value that can be used to indicate data is missing for some cases, an all too
real phenomenon. It is denoted by Na .

missl <- c¢(1.0, NA, 2.0)
2 * missl

[1] 2 NA 4
Notice how the last operation did the appropriate thing with the missing value. It is extremely convenient to
be able to use missing values as you would any other object in R. But numerical computations will have to
provide hints on how to handle the missing values. For example, the mean function computes the average

of a set of numbers.

No hint to process missing values
mean (missl)

[1] NA

Remove missing values before processing
mean(missl, na.rm = TRUE)

[1] 1.5

Another value NULL is used to indicate nothing is present. Note that it is semantically different from a
missing value.

NULL
NULL

Combine nothing
c()

NULL

One can check for missing-ness or nullity using the is family of functions.

is.null(c())
[1] TRUE
is.null(NA)
[1] FALSE

This should produce a warning
is.na(c())

Warning in is.na(c()): is.na() applied to non-(list or vector) of type
'NULL'

logical(0)
is.na(NA)

[1] TRUE

There are many others: is.numeric, is.list, is.vector, etc.

Arithmetic and logical operations

The standard operations are all available: +, -, * (multiplication), / division. In R, when you perform
arithmetic on vectors, the operations happen on all elements.

Add two vectors
1:3 + 2:4

[1] 3 57

Multiply a vector by 2
2 * 1:3

[1]1 2 4 6

Better to have parenthesis
2 % (1:3)

[1] 2 4 6

Divide
c(2, 4, 6) / c(2, 4, 6)

[1] 1 11

Halve
c(2, 4, 6) / 2

111123

R recycles shorter vector to match length
c(2, 4, 6, 8) / c(1, 2)

[1] 2 2 6 4

Above is same as
c(2, 4, 6, 8) / c(1, 2, 1, 2)

[1] 2 2 6 4

Warning, but not error below
c(2, 4, 6) / c(1, 2)

Warning in c(2, 4, 6)/c(l, 2): longer object length is not a multiple of
shorter object length

[1]1 2 2 6

The last operation shows how R tries to make two vectors conform in length and provides a warning. Good
code avoids relying on such behaviors as they can cause unpredictable errors. When you see this
warning, try to find its source - probably a bug!

The usual comparison operators are available: == for equality, != for not equal to, >= for greater than or
equal to, etc.

XX <- 1:3

XX == XX

[1] TRUE TRUE TRUE

1 is expanded to match length of xx
xx > 1

[1] FALSE TRUE TRUE

Comparison operators can be used to select subsets of vectors. Some examples with the understanding
that a % 2 returns the reminder upon division of a by 2.

XX <- 1:10
Pick all numbers >= 5
XxX[xx >= 5]

(11 5 6 7 8 9 10

Pick even numbers from 1 to 10
XX[xx %% 2 == 0]

[1] 2 4 6 8 10

Pick odd numbers from 1 to 10

XX[xx %% 2 != 0]

[11 1 357 9

Coercion

We saw above that some functions, can silently coerce the results to something meaningful. In many case,
such coercions can be useful.

How many even numbers between 1 and 107?

xx <= 1:10
XX %% 2 == 0

[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

sum(xx %% 2 == 0)
[1] 5
Here xx %% 2 == 0 is alist of 10 logical values with TRUE wherever we have an even number. The

function sum converts TRUE values to 1 and FALSE values to 0 and results to provide the answer.

R usually coerces the results where possible to the type that can accomodate the result. If it cannot, it
signals an error.

There are many explicit coercion functions such as as.numeric, as.integer,as as.list.

XX <= 1:5

as.integer(xx %% 2 == 0)

(1101010

as.character (xx)

[l] Illll Il2|l Il3|l Il4|l Il5ll

as.list(xx)

[[1]]
(11 1
##

[[2]]
[1] 2
##

[[3]]
[1]1 3
##

[[4]]
[1] 4
##

[[5]]
[11 5

Although we have not discussed dates and times, the function as.Dpate will convert a character string to

a date object. It needs a hint as to the date format and assumes an international format (more below) for
dates by default.

February date is wrong, just to illustrate
as.Date(c("2016-06-15", "2016-02-30"))

[1] "2016-06-15" NA

as.Date("9/27/2016", format = "%m/%d/%Y")

[1] "2016-09-27"

Sys.timezone()

[1] "America/Los_Angeles"

The last function returns the current time zone. (Using zone information automatically takes daylight
savings time in arithmetic!)

Coercion functions are useful when processing external data for computational work.

Dates and Times

Dates and times occur often in data and R is well-equipped to handle them. There are functions in base R
(strptime , coercion functions as.Date, as.POSIX1t) that can convert from strings to date-time
objects and vice-versa. These often require a format string that specifies how the way the date is
formatted, something that can vary all the time. The exact details of the format string (¢m for month, 2d
for day, sy for year including century, etc.) are described in the documentation for the strptime
function.

For this class, we recommend the package lubridate as it offers many convenient functions for
arithmetic with dates. The vignette for the package is a good introduction, and we merely provide a few
quick examples.

library(lubridate)

##
Attaching package: 'lubridate'

The following object is masked from 'package:base':
##
date

ymd(c("20160927", "20160230"))
Warning: 1 failed to parse.
[1] "2016-09-27" NA
mdy(c("6/12/16", "2/9/16"))

[1] "2016-06-12" "2016-02-09"
dmy(c("1/9/2016", "26/9/16"))

[1] "2016-09-01" "2016-09-26"

parse_date_time("9/27/2016 10:30:00",
orders = "$m/%d/%y %H:%M:%S",
tz = Sys.timezone())

[1] "2016-09-27 10:30:00 PDT"

The format string used by lubridate is described in detail in the documentation/help for the function

parse_date time.

Naming

R allows one to add names to objects.

named x <- c(a = 1.02, b = 2, 3)
named x

a b
1.02 2.00 3.00

Above, only two of the three elements were named. This makes the third element have an empty name.
The function names allows one to retrieve the names of an object.

names (named_x)

[1] llall llbll n"nn
The naming facility allows one to access elements of vectors using names rather than indices.

Equivalent to named x[2]
named x["b"]

b
2

Equivalent to named x[1:2]
named x[c("a", "b")]

a b
1.02 2.00

Naming is an extremely useful tool in writing readable code. One might worry about a performance penalty
but it is negligible in most cases and the gains in readability far outweigh any inefficiencies.

Naming works for lists too.

named list <- list(x = x, y =y, zed = 2z)
named list[c("x", "zed")]

$X

[1]1 1 2

##

Szed

[11 1 2 3 4 5

With lists, the individual elements can also be accessed using the dollar ($) notation.

named list$zed

[1] 1 2 3 4 5

Much of R code and functions exploit naming; many functions return more than one value and they are
often stuffed into a named vector or list.

aSummary <- summary(1l:10)

aSummary
Min. 1lst Qu. Median Mean 3rd OQu. Max.
1.00 3.25 5.50 5.50 7.75 10.00

names (aSummary)

[1] "Min." "lst Qu." "Median" "Mean" "3rd Qu." "Max."
typeof (aSummary)

[1] "double"

aSummary["Median"]

Median
5.5

Matrices

The function matrix can be used for creating matrices which are two-dimensional arrays.

Create a 3 by 2 matrix.
m <- matrix(l:6, nrow = 3)

m

(.11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Another way is to use existing vectors to bind into a matrix.

XX <- 1:3

yy <- 4:6

Bind by columns
m2 <- cbind(xx, yy)
Bind by rows
rbind(xx, yy)

[,11 [,2] [,3]
xx 1 2 3
vy 4 5 6

The matrix m2 has the same content as m above, but the columns have names xx and yy which can
be used in subsetting indexing again.

Access element in row 1, column 2
m[l, 2]

[1] 4

Access second column
m[, 2]

[1] 4 5 6

Do the same with matrix m2
m2[, "yy"]

[1] 4 5 6

Access the third row of m

m[3,]
[1]1 3 6
Datasets

R comes with many datasets built in. These are part of the datasets package that is always loaded in R.
For example, the mtcars dataset is a well-known dataset from Motor Trend magazine, documenting fuel
consumption and vehicle characteristics for a number of vehicles. At the R console, typing mtcars will
print the entire dataset.

You can find help on datasets as usual using the Help tab in RStudio, clicking on the packages link and
navigating to the datasets package.

Import data

To do any real work, one has to load data from an external source. RStudio makes it easy to import data.

Consider the data set that will be used in Lab 2, which is the 100m times for men and women. We will
illustrate importing this data set, step by step.

Step 1

From the Import Dataset menu, select From CSV to get a dialog as shown below and navigate to the folder
containing the 100men file.

Ql- &~ 2 ~ Addins ~ K Project: (None
)] Untitled1* Environment History -
Source on Save QW = Run °% Source ~ 2 | 1* Import Data<~ Ust ~
1 x=1+) T Ow
2 g2+ import Text Data
<3 File/Url
4
Browse...
Data Preview
<
Name Date A
Cloud Drive ©1 intro-lab01.Rmd
€ intro-1ab01.html
* intro-1ab02.nmi
A A > figs
new.R
intro-1ab01.R
©) intro-1ab02.Rmd
@) intro-lecture01.Rmd
©) intro-lecture02.Rmd
©7 intro-lecture03.Rmd
o R-requirements.txt
De @ Styles.css
" 100men
o 100women
men
R.oode
R code
R code
R code
R code
R code
Import Options Code Preview. J
B code
library(readr) R code
Name: dataset v First Row as Names Delimiter: Comma ¢ Escape ’ dataset <- read_csv(NULL =
Skip: 0 v Trim Spaces Quotes Comment: Defau't s View(dataset)
7//Open Data Viewer gncoding: Detaut S NA Detaut ¢
(Top & Import Cancel
S —

Console

Note that the import dialog has a number of options and on the right buttom it shows a preview of the
code that will be used to import the data. If one cut and pasted the code into the R console, the result
would be the same as what one would get via the dialogs.

RStudio also take care to name the variable that will hold data according R conventions using x100men !

Step 2

When you open the file, RStudio shows a preview of the data in the viewer window.

[] [J RStudio
+}

-8 8 - ~ Addins + & Project: (None) ~
O Untitled1* x = | Environment History =)
& = Source on Save Q Z - 1 #Run 5% + Source v # [_#importDataset + ¥ Lst
1 x=1+ T
2 y=24 Import Text Data
b T
~/Statistics /datascience_101/modules/intro/ 100men Browse...
Data Preview:
Athlete Time Date
(character)
Usain Bolt (Jamaica) 5.58 Aug 16 b
Usain Bolt (Jamaica) 9.69 Aug 16 e

Usain Bolt (Jamaica) 9.72 May 31
Asafa Powell (Jamaica) 9.74 Sept 9
Asafa Powell (Jamaica) 9.77 June 14
Maurice Greene (USA) 9.79 June 16
Donovan Bailey (Canada) 9.84 July 27
Leroy Burrell (USA) 9.85 July 6

Carl Lewis (USA) 9.86 Aug. 25
Leroy Burrell (USA) 9.90 June 14
Carl Lewis (USA) 9.92 Sept. 24
Calvin Smith (USA) 9.93 July 3

Jim Hines (USA) 9,95 Oct. 14

Jim Hines (USA) 9.99 June 20

R code
Armin Hary (West Germany) 10,0 June 21 R code
Willie Williams (USA) 10.1 Aug. 3 Bcode
Jesse Owens (USA) 10.2 June 20
J R code
e Mllinoms (P amada) 103 Auin 0 a
Previewing first SO entries. 20 parsing errors. Acode
Import Options Code Preview: (%] |Boode
R.code
library(readr) R code
Name: | X100men v/First Row as Names Delimiter: Comma B Escape: X100men <- read_csv("~/Statistics/datascience_101
Skip [) + Trim Spaces Quotes: Default Comment: Detast [| /modules/intro/100men™)

View(X100men)
v Open Data Viewer gncoding: Default B n Defaut 2]

11 (opl [import | Cancel

Console iy

This is of course not what we want since a cursory inspection shows that the data appears to contain three
columns. So obviously, we have specified something wrong.

Step 3

In the Import Options panel, change the delimeter to Tab and while we are at it, change the name to
data.men . Notice how the code preview reflects changes made to these options.

e0e RStudio
Qlv @~ B BB & | A Cotofiesfunction v Addins ~ & project: (None) ~
@ Untitled1* x = (5 | Environment History -
4 | [sourceonsave | Q /- L) “#Run 5 [#Source - E | S [L#Import Dauaset - | us-| @
1 x=14" =
2 y =2« mportTextData s
1T Fleun:
_101/ fintro/ 100men | Browse...
Data Preview:
Athlete Time Date
(character) ~ (double) ™ (character) ~
Usain Bolt Jamaica) 9.58 Aug 16, 2009
Usain Bolt Jamaica) 9.69 Aug 16, 2008 -
Usain Bolt Jamaica) 9.72 May 31, 2008 | @
Asafa Powell (Jamaica) 9.74 Sept 9, 2007 [
Asafa Powell (Jamaica) 9.77 Junc 14, 2005
Maurice Greene (USA) 9.79 Junc 16, 1999
Donovan Bailey (Canada) 9.84 July 27,1996
Leroy Burrell (USA) 9.85 July 6, 1994
Carl Lewis (USA) 9.86 Aug. 25, 1991 - N
Leroy Burrell (USA) 9.90 june 14,1991
Carl Lewis (USA) 9.92 Sept. 24, 1988
Calvin Smith (USA) 9.93 July 3,1983
Fm Hines (USA) 9.95 Oct. 14, 1968
Fm Hines (USA) 9.99 June 20, 1968 R code
Armin Hary (West Germany) 10.00 june 21, 1960 R code
Willie Williams (USA) 10.10 Aug. 3, 1956 A code
Jesse Owens (USA) 10.20 junc 20, 1936
Prorrns Wl Lm s (" wmm bl 1A N Aum A VAN m
Previewing first S0 entries. Acode
* | Beode
Import Options: Code Preview: J
1ibr: (readr)
ary R code
Name: (vJFirst Row as Names Delimiter: Tab Escape: | Nore X100men <- read_delim("~/Statistics/datascience_101
Skip: 0 (v) Trim Spaces Quotes: Default 5 Comment: Defsult () | | /modules/intro/100men",
) — ' . “\t", escape_double = FALSE, trim ws = TRUE)
|v/Open Data Viewer gncoding: Default NA: Default View(X100men)
Ll (Topt | Cancel |
Console M

Step 4
Press the Import button to get the data into R.

Q. .~ 2~ =1 ~ Addins ~
9] Untitled1* | data_men
Filter
Athlete Time Date

1 Usain Bolt (Jamaica) 9.58 Aug 16, 2009
2 Usain Bolt Jamaica) 9.69 Aug 16, 2008
3 Usain Bolt Jamaica) 9.72 May 31,2008
4 Asafa Powell (Jamaica) 9.74 Sept 9, 2007

5 Asafa Powell (Jamaica) 9.77 June 14, 2005
6 Maurice Creene (USA) 9.79 June 16,1999
7 Donovan Balley (Canada) 9.84 July 27,1996
8 Leroy Burrell (USA) 9.85 July 6, 1994

9 Carl Lewis (USA) 9.86 Aug. 25,1991
10 Leroy Burrell (USA) 9.90 june 14,1991
11 Carl Lewis (USA) 9.92 Sept. 24,1988
12 Calvin Smith (USA) 9.93 July 3,1983
13 Jim Hines (USA) 9.95 Oct. 14,1968
14 Jim Hines (USA) 9.99 June 20, 1968

15 Armin Hary (West Germany) 10.00 june 21, 1960
16 Willie Williams (USA) 10,10 Aug. 3, 1956
17 Jesse Owens (USA) 10.20 June 20, 1936

Showing 1 to 18 of 20 entries

Console
K 1S & COLIADOrAtiVe Projoct With many CONtribuUtors.

Type 'contributors()’' for more informatiom and
‘citation()’' on how to cite R or R packages inm publicationms.

Type 'demo()’ for some demos, ‘help()’ for om-lime help, or
‘help.start()’ for an HTML browser interface to help.
Type 'q()’ to quit R.

> library(readr)
> data_men <- reoad delim("~/Statistics/datascience_101/modules/intro/100men”,
+ “\t", escape_double = FALSE, trim ws = TRUE)
Parsed with column specificatioam:
cols(
Athlete = col_character(),
Time = col_double(),
Date = col_character()
)
> View(data_men)
>

RStudio

Environment History

T &5 * Import Dataset ~

) Clobal Environment ~

Data
data_men
Files Plots

>

Packages

20 obs. of 3 variables

Help Viewer

R: Vignettes and other documentation ~

K Project: (None) ~

Vignettes and other documentation R

V)

Vignettes from package 'dplyr’'

dplyr::.data_frames
dolyr: databases
delyrchybrid-
evaluation
dplyr:introduction
dplyr:new-sql-
backand
dplyr.nse
dplyr:two-table
dplyr:window-
functions

Data frame performance
Databases
Hybrid evaluation

Introduction to dplyr
Adding a new SQL backend

Non-standard evaluation
Two-table verbs
Window functions and grouped mutate/filter

HTML
HTML
HTML

HTML
HTML

HTML
HTML
HTML

source R code
source R code
source R code

source R code
source R code

source R .code
source R code
source R code

The result of the import is a variable called data.men that contains the data. Data formatted this way
(either tab-delimeted, or comma-separated, or spread-sheet like) is so common that R has a abstraction
for it: the data frame. You will have more opportunity to learn about data frames in the data parts of the

course.

Avoiding dialogs

As one becomes more and more familiar with R, direct code becomes preferable to the slower interactive
dialogs. This is one reason that RStudio gives you the code preview, to aid in your learning process. So, to
get the same effect as the above dialog process did, one could have pasted the RStudio code into an R

console to get the same result.

library(readr)
data.men <- read delim("100men",

Parsed with column specification:

cols(

Athlete = col_character(),
Nation = col character(),

Time = col_double(),

Date = col date(format = "")
)

That would create the same data set.

"\t", escape double =

FALSE, trim ws =

TRUE)

With more complex structures like data frames, the function str (for structure) is a good way to examine

them.

str(data.men)

Classes 'tbl df', 'tbl' and 'data.frame': 20 obs. of 4 variables:
$ Athlete: chr "Usain Bolt" "Usain Bolt" "Usain Bolt" "Asafa Powell"
$ Nation : chr "Jamaica" "Jamaica" "Jamaica" "Jamaica" ...

$ Time : num 9.58 9.69 9.72 9.74 9.77 9.79 9.84 9.85 9.86 9.9

S Date : Date, format: "2009-08-16" "2008-08-16"

- attr(*, "spec")=List of 2

..$ cols :List of 4

.. ..$ Athlete: list()

e e+« ..— attr(*, "class")= chr "collector character" "collector"
«. «..$ Nation : list()

e e+« ..— attr(*, "class")= chr "collector character" "collector"
. «.$ Time : listy()

e e+« ..— attr(*, "class")= chr "collector double" "collector"

.. ..$ Date :List of 1

ee o« «.$ format: chr ""

e oo o.— attr(*, "class")= chr "collector date" "collector"

..$ default: list()

.. ..—- attr(*, "class")= chr "collector guess" "collector"

..— attr(*, "class")= chr "col spec"

We see that the data consists of 20 observations on 3 variables: Athlete, Time, Date . The second is
numeric while the others are character.

More on data import

RStudio provides ways to import data directly from spreadsheets like Excel, etc. You can explore these
options on your own.

RStudio makes use of some packages to import data, notably the readr package. Strictly speaking these
packages are not necessary for the job, but such packages include improvements that make them
attractive. For example, a vanilla installation of R provides functions like read.csv and read.delim
(analogous to read csv, read _delim) that can also be used. However, by default, these functions
perform some conversions, treating character variables as factors, for example. That can be troublesome
(and computationally expensive) when dealing with large data sets. In this class, some instructors may use
these vanilla R functions with various options to control the behavior.

Graphs and Plots

Graphing/plotting are among the great strengths of R. There are two main main approaches that are
common in building graphs and plots.

1. Using basic functions provided by R itself via the graphics package which has a number of
standard facilities. A quick way to familiarize yourself with base graphics is to type the command
demo (graphics) atthe R console to see its capabilities.

2. Using a package like ggplot2 , which requires a more nuanced understanding of a graphics object.
You will have to install this package. ggplot2 implements a grammar of graphics and so takes a bit
more work to use, but is quite powerful.

Both approaches allow for step-by-step building up of complex plots, and creating PDFs or images that
can be included in other documents. Although ggplot2 is becoming more popular, many packages may
not use ggplot2 for plotting. Furthermore, some special plots created by packages may use one of base
graphics or ggplot2 and so there isn’t a ready made equivalent in the other, although it can be
constructed with extra work. So you will see both bae graphics and ggplot2 used in this course.

For ease of use, ggplot2 provides a function called gplot that can emulate the base graphics plot
function capabilities. This offers a quick way to begin using ggplot2 , initially.

Description Base Graphics ggplot2

Plot y plot(x, vy) gplot(x, y)
Versus x
using points

Plot y plot(x, y, type = "1") gplot(x, y, geom = "line")
Versus x
using lines

Plot vy plot(x, y, type |"b") gplot(x, y, geom = c("point", "line"))
Versus x

using both

points and

lines
Boxplot of x boxplot (x) gplot(x, geom = "boxplot")

Side-by- boxplot(x, y) gplot(x, y, geom = "boxplot")
side

boxplot of

x and y

Histogram hist(x) gplot(x, geom = "histogram")
of x

Examples

It is a good idea to try out the functions using the example function. At the R console type,
example(plot)

to see the plot examples.
For ggplot2, you will have to load the library first and then use example .

library(ggplot2)
example(gplot)

##
qplot> # Use data from data.frame
gplot> gplot(mpg, wt, data = mtcars)

.
.
r"-
.
4-
.
. .
o e
— .
s .
™
3-
2-
Tb 15
##

gplot> gplot(mpg, wt, data

N
o

mtcars,

mpg

colour

cyl)

4~
° : e
@
o0
'E o. e® s e
o b ° o
3-
3
a o
3
)
L]
2_
1b 1% Zb
mpg
##

gplot> gplot(mpg, wt, data = mtcars, size =

cyl)

cyl

4
$

mpg

##
gplot> gplot(mpg, wt, data = mtcars,

facets = vs ~ am)

30

35

I]Il .I.I.I]l

35

25

15

30

15

=

1

mpg

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
ut
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>

gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>
gplot>

No test:

##D gplot(1:10, rnorm(1l0), colour = runif(10))

##D gplot(1:10, letters[1:10])

##D mod <- lm(mpg ~ wt, data = mtcars)

##D gplot(resid(mod), fitted(mod))

##D

##D f <- function() {

##D a <- 1:10

##D b <-a " 2

##D gplot(a, b)

##D }

##D ()

##D

##D # To set aesthetics, wrap in I()

##D gplot(mpg, wt, data = mtcars, colour = I("red"))

##D

##D # gplot will attempt to guess what geom you want depending on the inp
##D # both x and y supplied = scatterplot

##D gplot(mpg, wt, data = mtcars)

##D # just x supplied = histogram

##D gplot(mpg, data = mtcars)

##D # just y supplied = scatterplot, with x = seq along(y)
##D gplot(y = mpg, data = mtcars)

##D

##D # Use different geoms

##D gplot(mpg, wt, data = mtcars, geom = "path")

##D gplot(factor(cyl), wt, data = mtcars, geom = c("boxplot",
##D gplot(mpg, data = mtcars, geom = "dotplot")

End(No test)

"jitter"))

