
423

APPENDIX: AN INTRODUCTION TO R

Introduction

All of the plots and numerical output displayed in this book were produced with the R
software, which is available at no cost from the R Project for Statistical Computing. The
software is available under the terms of the Free Software Foundation's GNU General
Public License in source code form. It runs on a wide variety of operating systems,
including Windows, Mac OS, UNIX, and similar systems, including FreeBSD and
Linux. R is a language and environment for statistical computing and graphics, provides
a wide variety of statistical methods (time series analysis, linear and nonlinear model-
ing, classical statistical tests, and so forth) and graphical techniques, and is highly exten-
sible. In particular, one of the authors (KSC) has produced a large number of new or
enhanced R functions specifically tailored to the methods described in this book. They
are available for download in an R package named TSA on the R Project Website at
www.r-project.org. The TSA functions are listed on page 468.

Important references for learning much more about R are also available at the
R-Project Website, including An Introduction to R: Notes on R, a Programming Envi-
ronment for Data Analysis and Graphics. Version 2.4.1 (2006-12-18), by W. N. Ven-
ables, D. M. Smith, and the R Development Core Team, (2006), and R: A Language and
Environment for Statistical Computing Reference Index, Version 2.4.1 (2006-12-18), by
The R Development Core Team (2006a).

The R software is the GNU implementation of the famed S language. It has been
under active development by the R team, with contributions from many statisticians all
over the world. R has become a versatile and powerful platform for doing statistical
analysis. We shall confine our discussion to the Windows version of R. To obtain the
software, visit the Website at www.r-project.org. Click on CRAN on the left-side of the
screen under Download. Scroll down the list of CRAN Mirror sites and click on one of
them nearest to you geographically. Click on the link for Windows (or Linux or MacOS
X as appropriate) and click on the link named base. Finally, click on the link labeled
R-2.6.1-win32.exe. (This file indicates release 2.6.1, the latest available release as of
this writing. Newer versions come out frequently.) Save the file somewhere convenient,
for example, on your desktop. When the download finishes, double-click the program
icon and proceed with installing the software. (The discussion that follows assumes that
you accept all of the defaults during installation.) At the end of this appendix, on
page 468, you will find a listing and brief description of all the new or enhanced func-
tions that are contained in the TSA package.

Before you start the R software for the first time, you should create a folder or
directory, say Rwork, to hold data files that you will use with R for this project or
course. This will be the working directory whenever you use R for this particular project
or course. This directory is to contain the workspace, a file that contains all the
objects (variables and functions) created in an R session. You should create separate

424 Appendix: An Introduction to R

working directories for different projects or different courses.† After R is
successfully installed on your computer, there will be an R shortcut icon on
your desktop. If you have created your working directory, start R by clicking
the R icon (shown at the right). When the software has loaded, you will have
a console window similar to the one shown in Exhibit 1 with a bottom line that reads >
followed by a large rectangular cursor (probably in red). This is the R prompt. You may
enter commands at this prompt, and they will be carried out when you press the Enter
key. Several tasks are available through the menus.

The first task is to save your workspace in the working
directory you created. To do so, select the File menu and
then click on the choice Save workspace… .‡ You now
may either browse to the directory Rwork that you created
(which may take many steps) or type in the full path name; for
example “C: \Documents and Se t t ings \ JoeStuden t \
My Documents\Course156\Rwork”. If your working direc-
tory is on a USB flash drive designated as drive E, you might
simply enter “E:Rwork”. Click OK, and from this point on in
this session, R will use the folder Rwork as its working direc-
tory.

You exit R by selecting Exit on the File menu. Every
time you exit R, you will receive a message as to whether or
not to Save the workspace image. Click Yes to save
the workspace, and it will be saved in your current working
directory. The next time you want to resume work on that
same project, simply navigate to that working directory and
locate the R icon there attached to the file named .RData. If you double-click this icon,
R will start with this directory already selected as the working directory and you can get
right to work on that project. Furthermore, you will receive the message [Previ-
ously saved workspace restored].

Exhibit 1 shows a possible screen display after you have started R, produced two
different graphs, and worked with R commands in a script window using the R editor.
Numerical results in R are displayed in the console window. Commands may be entered
(keyed) in either the console window and executed immediately or (better) in a script
window (the R editor) and then submitted to be run in R. The Menu bar and buttons will
change depending on which window is currently the “focus.”

† If you work in a shared computer lab, check with the lab supervisor for information about
starting R and about where you may save your work.

‡ If you neglected to create a working directory before starting R, you may do so at
this point. Navigate to a suitable place, click the Create new folder button, and
create the folder Rwork now.

Introduction 425

Exhibit 1 Windows Graphical User Interface for the R Software

A particularly useful feature of R is its ease of
including supplementary tools in the form of
libraries or packages. For example, all the
datasets and the new or enhanced R functions
used in this book are collected into a package
called TSA that can be downloaded and installed
in R. This can be done by clicking the Packages
menu and then selecting Set CRAN mirror.
Again select a mirror site that is closest to you
geographically, and a window containing the
names of all available packages will pop up.

In addition to our TSA package, you will
need to install packages named leaps, locfit,
MASS, mgcv, tseries, and uroot. Click the
Packages menu once more, click Install
package(s), and scroll through the window.
Hold down the Ctrl key and click on each of these
seven package names. When you have all seven
selected, click OK, and they will be installed on
your system by R. You only have to install them

script window

console window

(inactive) graph window

(active) graph window

Menu bar and buttons

426 Appendix: An Introduction to R

once (but, of course, they may be updated in the future and some of them may be incor-
porated into the core of R and not need to be installed separately).

 We will go over commands selected from the various chapters as a tutorial for R,
but before delving into those, we first present an overview of R. R is an object-oriented
language. The two main objects in R are data and functions. R admits many data struc-
tures. The simplest data structure is a vector that contains raw data. To create a data vec-
tor named Dat containing, say, 31, 4, 15, and 93, after the > prompt in the console
window, enter the following command

Dat=c(31,4,15,93)

and then press the Enter key. The equal sign symbol signifies assigning the object on its
right-hand side to the object on its left-hand side. The expression c(31,4,15,93)
stands for concatenating the numbers within the parentheses to make a vector. So, the
command creates an object named Dat that is a vector containing the numbers 31, 4,
15, and 93. R is case-sensitive, so the objects named Dat and DAt are different. To
reveal the contents of an object, simply type the name of the object and press the Enter
key. So, typing Dat in the R console window (and pressing the Enter key) will display
the contents of Dat. If you subsequently enter DAt at the R prompt, it will complain by
returning an error message saying that object "DAt" is not found. The name of an object
is a string of characters that may contain letters, numerals, and the period sign, but the
leading character is required to be a letter.† For example, Abc123.a is a valid name for
an R object but 12a is not. R has some useful built-in objects, for example pi, which
contains the numerical value of π required for trigonometric operations such as comput-
ing the area of a circle.

For us, the most useful data structure is a time series. A time series is a vector with
additional information on the epoch of the first datum and the number of data per a basic
unit of time interval. For example, suppose we have quarterly data starting from the sec-
ond quarter of 2006: 12, 31, 22, 24, 30. This time series can be created as follows:

> Dat2=ts(c(12,31,22,24,30), start=c(2006,2), frequency=4)

Its content can be verified by the command

> Dat2

Qtr1 Qtr2 Qtr3 Qtr4
2006 12 31 22
2007 24 30

Larger datasets already in a data file (raw data separated by spaces, tabs, or line breaks)
can be loaded into R by the command

> Dat2=ts(scan('file1'), start=c(2006,2), frequency=4)

where it is assumed that the data are contained in the file named file1 in the same
directory where you start up R (or the one changed into via the change dir com-
mand). Notice that the file name, file1, is surrounded by single quotes ('). In R, all

† Certain names should be avoided, as they have special meanings in R. For example, the let-
ter T is short for true, F for false, and c for concatenate or combine.

Introduction 427

character variables must be so enclosed. You may, however, use either single quotes or
double quotes (") as long as you use them in pairs.

Datasets with several variables may be read into R by the read.table function.
The data must be stored in a table form: The first row contains the variable names, and
starting from the second line, the data are stored so that data from each case make up a
row in the order of the variable names. The relevant command is

Dat3=read.table('file2',header=T)

where file2 is the name of the file containing the data. The argument header=T
specifies that the variable names are in the first line of the file. For example, let the con-
tents of a file named file2 in your working directory be as follows:

Y X
1 2
3 7
4 8
5 9

> Dat3=read.table('file2',header=T)
> Dat3
 Y X
1 1 2
2 3 7
3 4 8
4 5 9

Note that in displaying Dat3, R adds the row labels, defaulted to be from 1 to the num-
ber of data cases. The output of read.table is a data.frame, which is a data
structure for a table of data. More discussion on data.frame can be found below.
Presently, it suffices to remember that the variables inside a data.frame are not
accessible. Think of Dat3 as a closed suitcase. It has to be opened before its variables
are accessible in an R session. The command to “open” a data.frame is to attach
it:

> Y
Error: object "Y" not found
> attach(Dat3)
> Y
[1] 1 3 4 5
> X
[1] 2 7 8 9

R can also read in data from an Excel file saved in the csv (comma-separated values)
format, with the first row containing the variable names. Suppose file2.csv contains
a spreadsheet containing the same information as in file2. The commands for reading
in the data from file2.csv are similar to the one for a text file.

> Dat4=read.csv('file2.csv',header=T)
> Dat4
 Y X
1 1 2
2 3 7
3 4 8
4 5 9

428 Appendix: An Introduction to R

The functions scan, read.table, and read.csv have many other useful options.
Use R Help to learn more about them. For example, run the command ?read.table,
and a window showing detailed information for the read.table command will open.
Remember that prefacing the question mark to any function name will display the func-
tion's details in a new Help window.

Functions in R are similar to functions in the programming language C. A function
is invoked by typing its name followed by a list of arguments enclosed by parentheses.
For example, the concatenate function has the name “c” and its purpose is to create a
vector obtained by concatenating the arguments supplied to the function.

> c(12,31,22,24,30)

Note that there can be no space between the left parenthesis and the function name.
Even if the argument list is empty, the parentheses must be included in invoking a func-
tion. Try the command

> c

R now sees the name of an object and will simply display its contents by printing the
entire set of commands making up the function in the console window. R has many use-
ful built-in functions, including abs, log, log10, exp, sin, cos, sqrt, and so
forth, that are useful for manipulating data. (The function abs computes the absolute
value; log does the log-transformation with base e, while log10 uses base 10; exp is
the exponentiation function, sin and cos are the trigonometric functions; and sqrt
computes the square root.) These functions are applied to a vector or a time series ele-
ment by element. For example, log(Dat2) log-transforms each element of the time
series Dat2 and transfers the time series structure to the transformed data.

> Dat2=ts(c(12,31,22,24,30), start=c(2006,2), frequency=4)
> log(Dat2)
 Qtr1 Qtr2 Qtr3 Qtr4
2006 2.484907 3.433987 3.091042
2007 3.178054 3.401197

Furthermore, vectors and time series can be manipulated algebraically with the usual
addition (+), subtraction (-), multiplication (*), division (/), or power (^ or **) carried
out element by element. For example, applying the transformation y = 2x^3 − x + 7 to
Dat2 and saving the transformed data to a new time series named new.Dat2 can be
easily carried out by the command

new.Dat2= 2*Dat2^3-Dat2+7

Chapter 1 R Commands 429

Chapter 1 R Commands

Now, we are ready to check out selected R commands used in
Chapter 1 of the book. Script files of the commands used in
each of the fifteen chapters are available for download at
www.stat.uiowa.edu/~kchan/TSA.htm. The script files contain
the R commands needed to carry out the analyses shown in the
chapters. They also contain a limited amount of additional
explanation. Download the scripts and save them in your work-
ing directory. You may then open them within R in an R editor
(script) window and you will save much typing! Once they are
downloaded, script files may be opened by either clicking the
open file button or by using the file menu shown at the
left.

Exhibit 2 A Script Window with Chapter 1 Scripts Displayed

Exhibit 2 shows a portion of the script file for Chapter 1
in a script window. The first four commands have been
highlighted by dragging the mouse pointer across them.
They can now all be executed by either pressing Con-
trol-R (Ctrl-R) or by right-clicking the highlighted group
and choosing Run from the choices displayed, as shown
at the left. If the cursor is in a single command line with
no highlighting, that one command may be executed
similarly.

430 Appendix: An Introduction to R

At the beginning of each session with R, you need to load the TSA library. The fol-
lowing command will accomplish this (but you may wish to investigate the .First
function that can automate some startup tasks).

library(TSA)

The TSA package contains all datasets and functions needed for repeating the analyses
and doing the exercises.

Exhibit 1.1 on page 2.
win.graph(width=4.875,height=2.5,pointsize=8)

Comments may be interspersed in the R codes to improve their readability. The # sign
in a R command signifies that what follows the sign are comments, and hence ignored
by R. The first R command opening with the # sign is therefore a comment. The second
R command opens a window for graphics that is 4.875 inches wide and 2.5 inches tall
with characters printed with point size 8. The chosen setting and similar settings pro-
duce time sequence plots that are appropriate for inclusion in the book. Other settings
will be appropriate for other purposes. For example, quantile-quantile plots are best
viewed with a 1:1 aspect ratio (height = width). For exploratory data analysis, you will
want larger graphics windows to use the full resolution of your computer screen to see
more detail. The command win.graph can be safely omitted altogether. If there is
currently no open graphics window, R will open a graphics window whenever a graph-
ics command is issued. You can resize this window in the usual ways by dragging edges
or corners.

data(larain)

This loads the time series larain into the R session and makes it available for further
analysis such as

plot(larain,ylab='Inches',xlab='Year',type='o')

Plot is a function. It draws the time sequence plot for larain. The argument
ylab='Inches' specifies “Inches” as the label for the y-axis. Similarly, the label for
the x-axis is “Year.” The argument type indicates how the data are displayed in the
plot. For type='o', the individual data points are overplotted on the curve;
type='b' (for both) is another option that superimposes the data points on the curve,
but with the curve broken around the data points. For type='l', only the line seg-
ments connecting the points are shown. (Note: This character (l) is an “el,” not a one.)
To show only the data points, supply the argument type='p'. To learn more about the
plot function and the full options for the type argument, run the command
?plot
A Help window on the plot function will then pop up for your browsing. Try it now.
What will be plotted if the option type='h' is used instead of type='o'? All
graphs may be saved (File > Save as > …) in any of several graphics formats: jpeg, pdf,
etc. Saved graphs may then be imported into most word-processing programs to create
high-quality reports.

Exhibit 1.2 on page 2.
win.graph(width=3,height=3,pointsize=8)
plot(y=larain,x=zlag(larain),ylab='Inches',

Chapter 1 R Commands 431

xlab='Previous Year Inches')

The plot function is a multipurpose function. It can do many different kinds of plots,
depending on the set of arguments passed to it and their attributes. Here, it draws the
scatter diagram of larain against its lag 1 values through the arguments y=larain
(that is, larain on the y-axis) and x=zlag(larain) (that is, the lag 1 of larain
is on the x-axis). Note that zlag is a function in the TSA package. Run the command
?zlag to learn what you can do with it.

Exhibit 1.3 on page 3.
data(color)
plot(color,ylab='Color Property',xlab='Batch',type='o')

Here we have supplied four arguments to the plot function to draw the time sequence
plot of the time series color. The first argument is simply color, but the other sup-
plied arguments are of the form name of the argument = argument value so the
first supplied argument is an unnamed argument, while the other arguments are named
arguments. You may wonder how an unnamed argument is interpreted by R. To under-
stand this, use the ?plot command to check that the argument list of the plot func-
tion is x, y, and … . You may guess that the x argument represents the x-variable, and
the y argument for the y-variable in a plot. The ellipsis (…) argument stands for all other
allowable arguments, which must, however, be specified with the name of the argument.
(Again, consult the pages of the plot function to figure out which other arguments
besides x and y may be passed to plot.) Any unnamed argument is interpreted to be
the value for the argument whose order matches that of the unnamed argument supplied
to the function. For example, color appears as the first argument supplied to the plot
function, so R interprets it as the value for the x argument. Now there is no value sup-
plied to the y argument. In this case, plot will examine the nature of the x-variable to
determine what actions to be taken. Since color is a time series, plot draws a time
sequence plot of color. To reinforce understanding, now try the following command
in which color appears twice in the argument list, as the first and second arguments.

plot(color, color, ylab='Color Property',
xlab='Batch',type='o')

Guess what will be drawn by R? Now, color is interpreted as the x-variable and also
the y-variable; hence a 45 degree line is drawn. However, the line seems to be of nonuni-
form thickness. (Can you see this?) Why? It is because seeing that the variables are time
series, plot draws the line by connecting data points in the order they are recorded,
with the order of the data points marked in the plot. This feature can be useful in some
analyses but in this case this feature is distracting. A remedy is to strip the time series
attribute from the x-variables before plotting. (Plot takes the clue of how to do the plot
from the attribute of the x-variable.) To temporarily turn color into a raw data vector,
use the command

as.vector(color)

Now, try the command

plot(as.vector(color), color, ylab='Color Property',
xlab='Batch',type='o')

432 Appendix: An Introduction to R

Exhibit 1.4 on page 4.
plot(y=color,x=zlag(color),ylab='Color Property',

xlab='Previous Batch Color Property')

The zlag function outputs an ordinary vector; that is, zlag(color) is the lag 1 of
color, but with its time series attribute stripped.

Exhibit 1.9 on page 7.
plot(oilfilters,type='l',ylab='Sales')

Plot is a high-level graphics function and, as such, it will replace what is currently in
the graphics window or create a new graphics window if none exists. Recall that the
argument type='l' instructs plot to just draw the line segments connecting the
individual time series points.

Month=c('J','A','S','O','N','D','J','F','M','A','M','J')

creates a vector named Month that contains 12 elements that represent the 12 months of
the year beginning with July.

points(oilfilters,pch=Month)

Points is a low-level graphics function that draws on top of an existing graph. Since
oilfilters is a time series, points plots oilfilters against time order, but the
argument pch=Month instructs the points function to plot the data points using the
successive values of the Month vector as plotting symbols. So, the first point plotted is
plotted as a J, the second as an A, and so forth. When the values of Month are used up,
they are recycled; think of Month being replicated as Month, Month, Month,…, to
make up any deficiency. So, the 13th data point is plotted as a J and the 14th as an A.
What letter is used for the 30th data point?

Alternatively, the exhibit can be reproduced by the following commands

plot(oilfilters,type='l',ylab='Sales')
points(y=oilfilters,x=time(oilfilters),

pch=as.vector(season(oilfilters)))

The time function outputs the epochs when the time series values were collected. The
season function returns the month of the data in oilfilters; season is a smart
function, as it returns the quarter of the data for quarterly data and so forth. The pch
argument expects a vector as its value, but the output of the season function has been
designed to be a factor object; hence the application of the as.vector function to
season(oilfilters) strips its factor attribute. (See more about factor objects
on page 435.)

A good way to appreciate the natural variation in a stochastic process is draw real-
izations from the process and plot them in a time sequence plot. For example, the inde-
pendent and identically normally distributed process is often used as a data generating
mechanism for completely random data; that is, data with no temporal structure. In
other words, such data constitute a random sample from a normal distribution that are
drawn sequentially over time. Simulating data from such a process and viewing their
time sequence plots is a valuable exercise that can train our eyes to differentiate whether
a time series is random or dependent over time, c.f. Exercise 1.3. The R command for
simulating and storing in a variable named y a random sample of size, say n = 48, from

Chapter 2 R Commands 433

a standard normal distribution is
y=rnorm(48)

The data can then be plotted using the command

plot(y, type='p', ylab='IID Normal Data')

Try the type='o' option in the above command. Which plotting option do you find
better to see the randomness in the data? Notice that executing the command
y=rnorm(48) again will yield a different time series realization of the random pro-
cess. The set.seed command discussed below addresses the issue of how to make
simulations in R “reproducible.”

Data can be simulated from other distributions. For example, the command
rt(n=48,df=5) simulates 48 independent observations from a t-distribution with 5
degrees of freedom. Similarly, rchisq(n=48,df=2) simulates a realization of size
48 from the chi-square distribution with 2 degrees of freedom.

Chapter 2 R Commands

We show some R code to simulate your own random walk with, say, 60 independent
standard normal errors.

Exhibit 2.1 on page 14.
n=60

This assigns the value of 60 to the object named n.

set.seed(12345)

This initializes the random number generator so that the simulation is reproducible if
needed.

sim.random.walk=ts(cumsum(rnorm(n)),freq=1,start=1)

The expression rnorm(n) generates n independent values from the standard normal
distribution. The function cumsum then computes the vector of cumulative sums of the
normally distributed sample, resulting in a random walk realization. The random walk
realization is then given the attribute of a time series and saved into the object named
sim.random.walk.

plot(sim.random.walk,type='o',ylab='Another Random Walk')

plots the simulated random walk.

Chapter 3 R Commands

We now move to discuss some of the R commands appearing in Chapter 3.

Exhibit 3.1 on page 31.
data(rwalk)

This command loads the time series rwalk, which is a random walk realization.

model1=lm(rwalk~time(rwalk))

434 Appendix: An Introduction to R

The function lm fits a linear model (a regression model) with its first argument being a
formula. A formula is an expression including a tilde sign (~), the left-hand side of
which is the response variable and the right-hand side are the covariates or explanatory
variables (separated by plus signs if there are two or more covariates). By default, the
intercept term is included in the model. The intercept can be removed by including the
term ‘‘−1’’ on the right-hand side of the tilde sign. Recall that time(rwalk) yields a
time series of the time epochs at which the random walk was sampled. So the command
lm(rwalk~time(rwalk)) fits a time trend regression model to the rwalk series.
The model fit is saved as the object named model1.

summary(model1)

The function summary prints out a summary of the fitted model passed to it. Hence the
command above prints out the fitted time trend regression model for rwalk.

Exhibit 3.2 on page 31.
plot(rwalk,type='o',ylab='y')
abline(model1)

The function abline is a low-level graphics function. If a fitted simple regression
model is passed to it, it adds the fitted straight line to an existing graph. Any straight line
of the form y = β0 + β1x can be superimposed on the graph by running the command

abline(a=beta0,b=beta1)

For example, the following command adds a 45 degree line on the current graph.

abline(a=0,b=1)

Recall the lm function can fit multiple regression models, with the covariates or
explanatory variables specified one by one, on the right side of the tilde sign (~) in the
formula. The covariates must be separated with a plus sign (+). Suppose we want to fit a
quadratic time trend model to the rwalk series. We need to create a new covariate that
contains the square of the time indices. The quadratic variable may be created before
invoking the lm function. Or it may be created on the fly when invoking the lm func-
tion. The latter approach is illustrated here.

model1a=lm(rwalk~time(rwalk)+I(time(rwalk)^2))

Notice that the expression time(rwalk)^2 is enclosed within the I function which
instructs R to create a new variable by executing the command passed into the I func-
tion. The fitted quadratic trend model can be inspected with the summary function.

> summary(model1a)
Call:
lm(formula = rwalk ~ time(rwalk) + I(time(rwalk)^2))
Residuals:
 Min 1Q Median 3Q Max
-2.696232 -0.768018 0.008256 0.853365 2.344685
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.4272911 0.4534893 -3.147 0.00262 **
time(rwalk) 0.1746746 0.0343028 5.092 4.16e-06 ***
I(time(rwalk)^2) -0.0006654 0.0005451 -1.221 0.22721

Chapter 3 R Commands 435

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.132 on 57 degrees of freedom
Multiple R-Squared: 0.8167, Adjusted R-squared: 0.8102
F-statistic: 127 on 2 and 57 DF, p-value: < 2.2e-16

The summary function repeats the function call to the lm function. It then prints
out the five-number numerical summary of the residuals, followed by a table of the
parameter estimates with their standard errors, t-values and p-values. All significant
covariates are marked with asterisks (*); more asterisks means higher significance, that
is, smaller p-value, as explained in the line labeled as Signif. codes. Finally, it outputs
the residual standard error, that is, the noise standard deviation estimate, and the multi-
ple R-squared of the fitted model. Clearly, the quadratic term is not significant so that it
is not needed, as is also obvious from the time plot of the series.

The reader may wonder why the I function is needed. This is because without the I
function, R interprets the term time(rwalk)+time(rwalk)^2 using the formula
convention (run ?formula to learn more about the formula convention), which results
in fitting the linear trend model! Refit the quadratic trend model but now omit the I
function in the R command, and compare the model fit with those of the linear and qua-
dratic trend models.

Exhibit 3.3 on page 32.
data(tempdub)

This loads the tempdub series. You can learn more about the dataset tempdub by run-
ning the command ?tempdub.
month.=season(tempdub)

The expression season(tempdub) outputs the monthly index of tempdub as a
factor, and saves it into the object month.. The first period sign (.) is part of the
name (month.) and is included to make the printout from later commands more clear.

We now digress to explain what a factor is. A factor is a kind of data structure
for handling qualitative (nominal) data that do not have a natural ordering like numbers
do. However, for purposes of summary and graphics, the user may supply the levels
argument to indicate an ordering among the factor values. For example, the following
command creates a factor containing the qualitative variable sex, with the default
ordering using the dictionary order.

> sex=factor(c('M','F','M','M','F'))
> sex
[1] M F M M F
Levels: F M

We can change the ordering as follows:

> sex=factor(c('M','F','M','M','F'),levels=c('M','F'))
> sex
[1] M F M M F
Levels: M F

Note the swap of F and M in the levels. The function table counts the frequencies of
the two sexes.

436 Appendix: An Introduction to R

> table(sex)
sex M F

3 2

The printout lists the frequencies of the values according to the order supplied in the
level argument. Now, we return to the R scripts in Chapter 3.

model2=lm(tempdub~month.-1)

Recall that month is a factor containing the month of the data. When a formula con-
tains a factor covariate, the function lm replaces the factor variable by a set of indicator
variables corresponding to each distinct level (value) of the factor. Here, month. has
12 distinct levels: Jan, Feb,…, and so forth. So, in place of month., lm creates 12
monthly indicator variables and replaces month. by the 12 indicator variables.
Because these 12 indicator variables are linearly dependent (they add up to a vector of
all ones), the intercept term has to be removed to avoid multicollinearity. The expression
‘‘-1’’ in the formula takes care of this. The fitted model corresponds to fitting a mean
separately for each month. If the expression ‘‘-1’’ is omitted, lm deals with the multi-
collinearity by omitting the first indicator variable; that is, the indicator variable for Jan-
uary will be deleted. In such a fitted model, the intercept represents the overall January
mean and the coefficients for other months are the deviations of their means from the
January mean.

summary(model2)

A summary of the fitted regression model is printed out with this command. Many vari-
ables derived from the fitted model can also be easily obtained. For example, the fitted
values can be printed as

fitted(model2)

whereas residuals are obtained by using

residuals(model2)

Exhibit 3.4 on page 33.
model3=lm(tempdub~month.) # intercept is automatically

included so one month (January) is dropped
summary(model3)

Exhibit 3.5 on page 35.
har.=harmonic(tempdub,1)

The first pair of harmonic functions (sine and cosine pairs) can be constructed by the
harmonic function, which takes a time series as its first argument and the number of
harmonic pairs as its second argument. Run ?harmonic to learn more about this func-
tion. The output of the harmonic function is a matrix that is saved into an object named
har.. Again, the first period is part of the name and included to make the later print-
outs clearer.

model4=lm(tempdub~har.)
summary(model4)

We now briefly discuss the use of matrices in R. A matrix is a rectangular array of num-
bers. It can be created by the matrix function. Here is an example:

Chapter 3 R Commands 437

> M=matrix(1:6,ncol=2)
> M
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

The matrix function expects a vector as its first argument, and it uses the values in the
supplied vector to fill up a matrix column by column. The column dimension of a matrix
is specified by the ncol argument and the row dimension by the nrow argument. The
expression 1:6 stands for the vector containing the integers from 1 to 6. So the matrix
function creates a matrix consisting of two columns using the six numbers 1, 2, 3, 4, 5,
and 6. Since the row dimension is missing, R assumes that the matrix has six elements
and hence the missing row dimension is set to 2. The dimensions of a matrix can be
extracted using the dim function.

> dim(M)
[1] 3 2

This displays the row and column dimensions of M as a vector. The function apply
can process a matrix column by column, with each column operated by a supplied func-
tion. For example, the column means of M can be computed as follows:

> apply(M,2,mean)
[1] 2 5

The first argument of the apply function is the matrix on which it processes, and the
second argument is MARGIN, which should be set to 1 for row processing or 2 for col-
umn processing. The third argument is FUN, which takes the user-specified function.
The example above instructs R to process M column by column and apply the mean
function to each column. How would you modify the preceding R command to compute
the row sums of M?

Exhibit 3.6 on page 35.
plot(ts(fitted(model4),freq=12,start=c(1964,1)),

ylab='Temperature',type='l',
ylim=range(c(fitted(model4),tempdub)))

points(tempdub)

The ylim option ensures that the y-axis has a range that includes both the raw data and
the fitted values.

Exhibit 3.8 on page 43.
plot(y=rstudent(model3),x=as.vector(time(tempdub)),

xlab='Time', ylab='Standardized Residuals',type='o')

The expression rstudent(model3) returns the (externally) Studentized residuals
from the fitted model. To compute the (internally) standardized residuals, use the com-
mand rstandard(model3).

Exhibit 3.11 on page 45.
hist(rstudent(model3),xlab='Standardized Residuals')

The function hist draws a histogram of the data passed to it as the first argument. Note
that the default heading of the histogram says that the plot is a histogram of

438 Appendix: An Introduction to R

rstudent(model3). While the default main label correctly depicts what is plotted,
it is often desirable to have a less technical but more descriptive label; for example, set-
ting the option main='Histogram of the Standardized Residuals'.

Exhibit 3.12 on page 45.
qqnorm(rstudent(model3))

The expression rstudent(model3) extracts the standardized residuals of model3.
The qqnorm function then plots the Q-Q normal scores plot of the residuals. A refer-
ence straight line can be superimposed on the Q-Q normal score plot by running the
command qqline(rstudent(model3)).

Exhibit 3.13 on page 47.
acf(rstudent(model3))

The acf function computes the sample autocorrelation function of the time series sup-
plied to the function. The maximum number of lags is determined automatically based
on the sample size. It can, however, be changed to, say, 30 by setting the option
max.lag=30 when calling the function.

The Shapiro-Wilk test and the runs test on the residuals can be carried out respec-
tively by the following commands.

shapiro.test(rstudent(model3))
runs(rstudent(model3))

These commands compute the test statistics as well as their corresponding p-values.

Chapter 4 R Commands

Exhibit 4.2 on page 59.
data(ma1.2.s)
plot(ma1.2.s,ylab=expression(Y[t]),type='o')

The software R can display mathematical symbols in a graph. The option
ylab=expression(Y[t]) specifies that the y label is Y with t as its subscript, all in
math font. Typesetting a formula does require some additional work. Read the help
pages for legend (?legend) and run the command demo(mathplot) to learn
more about this topic.

 An MA(1) series with MA coefficient equal to θ1 = −0.9 and of length n = 100 can
be simulated by the following commands.

set.seed(12345)

This command initializes the seed of the random number generator so that a simulation
can be reproduced if needed. Without this command, the random generator will initial-
ize “randomly,” and there is no way to reproduce the simulation. The argument 12345
can be replaced by other numbers to obtain different random numbers.

y=arima.sim(model=list(ma=-c(-0.9)),n=100)

The arima.sim function simulates a time series from a given ARIMA model passed
into the function as a list that contains the AR and MA parameters as vectors. The simu-
lated model above is an MA(1) model, so there is no AR part in the model list. The soft-

Chapter 5 R Commands 439

ware R uses a plus convention in parameterizing the MA part, so we have to add a minus
sign before the vector of MA values to agree with our parameterization. The sample size
is determined by the value of the argument n. So, the command above instructs R to
simulate a realization of size 100 from an MA(1) model with θ1 = −0.9.

 We now digress to explain some pertinent facts about list. A list is the most flex-
ible data structure in R. You may think of a list as a cabinet with many drawers (ele-
ments or components), each of which contains data with possibly different data
structures. For example, an element of a list can be another list! The elements of a list
are ordered according to the order they are entered. Also, elements can be named to
facilitate their easy retrieval. A list can be created by the list function with elements
supplied as its arguments. The elements may be passed into the list function in the
form of name = value, delimited by commas. Below is an example of a list contain-
ing three elements named a, b, and c, where a is a three-dimensional vector, b is a
number, and c is a time series.

> list1=list(a=c(1,2,3),b=4,c=ts(c(5,6,7,8),
start=c(2006,2),frequency=4))

> list1
$a
[1] 1 2 3
$b
[1] 4
$c Qtr1 Qtr2 Qtr3 Qtr4
2006 5 6 7
2007 8

To retrieve an element of a list, run the command listname$elementname, for
example

> list1$c
 Qtr1 Qtr2 Qtr3 Qtr4
2006 5 6 7
2007 8

Data of irregular structure can be stored as a list. The output of a function is often a list.
Simply entering the name of a list may result in dazzling output if the printed list is
large. An alternative is to first explore the structure of a list by the function str (str
stands for structure). An example follows.

> str(list1)
List of 3
 $ a: num [1:3] 1 2 3
 $ b: num 4
 $ c: Time-Series [1:4] from 2006 to 2007: 5 6 7 8

This shows that list1 has three elements and describes these elements briefly.

Chapter 5 R Commands

Exhibit 5.4 on page 91.
plot(diff(log(oil.price)),ylab='Change in Log(Price)',

type='l')

440 Appendix: An Introduction to R

The function diff outputs the first difference of the supplied time series. Higher-order
differences can be computed by supplying the differences argument. For example,
the second difference of log(oil.price) can be computed by the command

diff(log(oil.price), differences=2)

A useful convention of R is that the name of an argument in a function can be abbrevi-
ated if it does not result in ambiguity. For example, the previous command can be short-
ened to

diff(log(oil.price),diff=2)

Note that the second argument of the diff function is the lag argument. By default,
lag=1 and the diff function computes regular differences—first or higher differ-
ences. Later, when we deal with seasonal time series data, it will sometimes be desirable
to consider seasonal differences. For example, we may want to subtract this month’s
number from the number of the same month one year ago; that is, the differences are
computed with a lag of 12 months. This can be done by specifying lag=12. As an illus-
tration, computing the seasonal differences of period 12 can be done by issuing the com-
mand diff(tempdub,lag=12). What will be computed by the command
diff(log(oil.price),2)? One of the authors (KSC) committed a serious error,
more than once, when he tried to compute the second regular differences of some time
series by running a similar command with unnamed arguments. Instead of the second
regular differences, the first seasonal differences of lag 2 were actually computed by the
command with unnamed arguments! Imagine his frustrations of many anxious hours, all
because the data analysis from the flawed computations seriously conflicted with expec-
tations based on theory! The moral is that passing unnamed arguments to a function is
risky unless you know the positions of the relevant arguments very well. It is well to
remember that unnamed arguments, if present, should appear together in the beginning
part of the argument list, and there should be no unnamed argument after a named one.
Indeed, mixed arguments (some named and some unnamed in a haphazard order) may
result in erroneous interpretation by R. The order of the arguments in a function can be
quickly checked by running the command args(function.name) or
?function.name, where function.name should be replaced by the name of the
function you are checking.

Exhibit 5.11 on page 102.
library(MASS)

This loads the library MASS. Run the command library(help=MASS) to see the
content of this library.

boxcox(lm(electricity~1))

The function boxcox computes the maximum likelihood estimate of the power trans-
formation on the response variable to make a linear regression model appropriate for the
data. The first argument is a fitted model by the lm function. By default, the boxcox
function produces a plot of the log-likelihood function of the power parameter. The
MLE of the power parameter is the value that maximizes the plotted likelihood curve.
Here the model is that some power transform of electricity is given by the model of a
constant mean plus normally distributed white noise. But we already know that elec-

Chapter 6 R Commands 441

tricity is serially correlated, so this method is not entirely correct, as the autocorre-
lation in the series is not accounted for.

 For time series analysis, a more appropriate model is that some power transform of
the time series variable follows an AR model. The function BoxCox.ar implements
this approach. It has two drawbacks in that it is much more computer-intensive and that
other covariates cannot be included in the model in the current version of the function.
The first argument of BoxCox.ar is the name of the time series variable. The AR
order may be supplied by the user through the order argument. If the AR order is
missing, the function estimates the AR order by minimizing the AIC for the log-trans-
formed data. Both boxcox and BoxCox.ar require the response variable to be posi-
tive.

BoxCox.ar(electricity)

This plots the log-likelihood function of the power parameter for the model that
accounts for autocorrelation in the data.

Chapter 6 R Commands

Exhibit 6.9 on page 120.
acf(ma2.s,ci.type='ma',xaxp=c(0,20,10))

The argument ci.type='ma' instructs R to plot the sample ACF with the confidence
band for the kth lag ACF computed based on the assumption of an MA(k − 1) model.
See Equation (6.1.11) on page 112 for details.

Exhibit 6.11 on page 121.
pacf(ar1.s,xaxp=c(0,20,10))

This calculates and plots the sample PACF function. Run the command ?par to learn
more about the xaxp argument.

Exhibit 6.17 on page 124.
eacf(arma11.s)

This computes the sample EACF function (extended autocorrelation function) of the
data arma11.s. The maximum AR and MA orders can be set via the ar.max and
ma.max arguments. Their default values are seven and thirteen, respectively. For exam-
ple, eacf(arma11.s,ar.max=10,ma.max=10) computes the EACF with maxi-
mum AR and MA orders of 10. The EACF function prints a table of symbols with X
standing for a significant value and O a nonsignificant value.

library(uroot)

This loads the uroot library and the following commands illustrate the computation of
the Dickey-Fuller unit-root test.

ar(diff(rwalk))

This command finds the AR order for the differenced series, which is order 8, by the
minimum AIC criterion.

442 Appendix: An Introduction to R

ADF.test(rwalk,selectlags=list(mode=c(1,2,3,4,5,6,7,8),
Pmax=8),itsd=c(1,0,0))

This computes the ADF test for the data rwalk. The selectlags argument takes a
list as its value. The mode argument specifies which lags must be included, and if it is
absent, then the Pmax argument sets the maximum lag and the ADF.test function
determines which lags to include in the test using several methods by setting the mode
to signf, aic, or bic. The option signf is the default value for mode, which esti-
mates a subset AR model by retaining only significant lags. The argument itsd
expects a vector; the first two elements are binary, indicating whether to include a con-
stant term (if the first element is 1) or a linear time trend (if the second element is 1);
and the third element zero if there are no more covariates to include in the model. See
the help pages for the ADF.test function to learn more about it. Hence, the R com-
mand instructs ADF.test to carry out the test with the null hypothesis that the model
has a unit root and an intercept term. The alternative is that the model is stationary, so a
small p-value implies stationarity!

ADF.test(rwalk,selectlags=list(Pmax=0),itsd=c(1,0,0))

In comparison, the preceding command carries out the ADF test with the null hypothe-
sis being that the model has a unit root, an intercept but no other lags, whereas the alter-
native specifies that the model is a stationary AR(1) model with an intercept. If
itsd=c(0,0,0), then the alternative model is a centered stationary AR(1) model,
that is, with zero mean. Such a hypothesis is not relevant unless the data are already
mean-corrected.

Exhibit 6.22 on page 132.
set.seed(92397)
test=arima.sim(model=list(ar=c(rep(0,11),.8),

ma=c(rep(0,11),0.7)),n=120)

This simulates a subset ARMA model. Here rep(0,11) stands for a sequence of 11
zeros.

res=armasubsets(y=test,nar=14,nma=14,y.name='test',
ar.method='ols')

The armasubsets function computes various subset ARMA models, with the maxi-
mum AR and MA orders specified by the nar and nma arguments, both set as 14 in the
example above. The associated AR models are estimated by the default method of ols
(ordinary least squares).

plot(res)

The plot function is a smart function. Seeing that res is the output from the
armasubsets function, it draws a table indicating several of the best subset ARMA
models.

Chapter 7 R Commands

Below is a function that computes the method-of-moments estimator of the MA(1) coef-
ficient of an MA(1) model. It is a simple example of an R function. Simply copy and

Chapter 7 R Commands 443

paste it into the R console. Press the enter key to compile the code, and the function
estimate.ma1.mom will be created and then be available for use in your workspace.
This function only exists in the particular workspace where it was created.

estimate.ma1.mom=function(x){r=acf(x,plot=F)$acf[1];
if (abs(r)<0.5) return((-1+sqrt(1-4*r^2))/(2*r))
else return(NA)}

Readers uninterested in the specifics of R programming may skip down to the
material on Exhibit 7.1. The syntax of an R function takes the form

function.name = function(argument list){function body}

where function body is a set of R statements (commands). Normally, complete R
commands are separated by line breaks. Alternatively, they may be separated by the
semicolon symbol (;). If an R command is incomplete, R will assume that it is to be
continued on the next line and so forth until R reads a complete command. So the func-
tion above has a single argument called x and contains two commands. The first one is

r=acf(x,plot=F)$acf[1]

which instructs R to compute the acf of x without plotting the values, extract the first
element of the computed sample acf function (that is, the lag 1 autocorrelation) and then
save it in an object called r. The object r is a local object; it only exists within the
estimate.ma1.mom function environment. The second command is

if (abs(r)<0.5)
return((-1+sqrt(1-4*r^2))/(2*r)) else return(NA)

Note the line break after the if clause and the second half of the command. Since the
if clause alone is incomplete, R assumes that it is to be continued on the next line. With
the second line, R finds a complete R command and so concludes the two lines of com-
mands together as a complete command. In other words, R sees the next command as
equivalent to the following one line:
if (abs(r)<0.5) return((-1+sqrt(1-4*r^2))/(2*r)) else return(NA)

The function abs computes the absolute value of the argument passed to it, whereas
sqrt is the function that computes the square root of its argument. Now, we are ready
to interpret the second command: if the absolute value of r, the lag 1 autocorrelation of
x, is less than 0.5 in magnitude, the function returns the number

(−1 + sqrt(1 − 4*r^2))/(2*r)

which is the method-of-moments estimator of the MA(1) coefficient ; otherwise the
function returns NA (see Equation (7.1.4) on page 150). The symbol NA is the code
standing for a missing value in R. (NA stands for not available.) In this example, R is
specifically instructed what value to return to the user. However, the default procedure is
that a function returns the value created by the last command in the function body. R
provides a powerful computer language for doing statistics. Please consult the docu-
ments on the R Website to learn more about R programming.

Exhibit 7.1 on page 152.
data(ma1.2.s)

This loads a simulated MA(1) series.

θ1

444 Appendix: An Introduction to R

estimate.ma1.mom(ma1.2.s)

This computes the MA(1) coefficient estimate by the method of moments using the
user-created estime.ma1.mom function above!

data(ar1.s)

This loads a simulated AR(1) series from the TSA package.

ar(ar1.s,order.max=1,AIC=F,method='yw')

This computes the AR coefficient estimates for the ar1.s series. The ar function esti-
mates the AR model for the centered data (that is, mean-corrected data), so the intercept
must be zero and not estimated or printed out in the output. The ar function requires the
user to specify the maximum AR order through the order.max argument. The AR
order may be estimated by choosing the order, between 0 and the maximum order,
whose model has the smallest AIC. This option can be specified by setting the AIC
argument to take the true value, that is, AIC=T. Or we can switch off order selection by
specifying AIC=F. In the latter case, the AR order is set to the maximum AR order. The
ar function can estimate the AR model using a number of methods, including solving
the Yule-Walker equations, ordinary least squares, and maximum likelihood estimation
(assuming normally distributed white noise error terms). These correspond to setting the
option method='yw', method='ols', or method='mle', respectively. In par-
ticular, the preceding R command fits an AR(1) model for the ar1.s series by solving
the Yule-Walker equation.

 We digress briefly to discuss the concept of a logical variable, which can take the
value TRUE or FALSE. These values can be abbreviated as T and F. In binary represen-
tation, T is also represented by 1 and F by 0. R adopts the useful convention that a logi-
cal variable appearing in an arithmetic expression will be automatically converted to 1 if
it is a T and 0 otherwise.

Exhibit 7.6, page 165.
data(arma11.s)
arima(arma11.s, order=c(1,0,1),method='CSS')

The arima function estimates an ARIMA(p,d,q) model for the time series passed to it
as the first argument. The ARIMA order is specified by the order argument,
order=c(p,d,q), so the command above fits an ARMA(1,1) model to the data.
Estimation can be carried out by the conditional sum-of-squares method (method=
'CSS') or maximum likelihood (method='ML'). The default estimation method is
maximum likelihood, with initial values determined by the CSS method. The arima
function prints out a summary of the fitted model. The fitted model may also be saved as
an object that can be further manipulated, for example, for model diagnostics. By
default, if d = 0, a stationary ARMA model will be fitted. Also, the fitted model is in the
centered form; that is, an ARMA model fitted to the series minus its sample mean. The
intercept term reported in the output of the arima function is a misnomer, as it is in fact
the mean! However, the mean so estimated generally differs slightly from the sample
mean.

Chapter 7 R Commands 445

Exhibit 7.10 on page 168.
res=arima(sqrt(hare),order=c(3,0,0))

This saves the fitted AR(3) model in the object named res. The output of the arima
function is a list. Run the command str(res) to find out what is saved in res.
You will find that most of the things in res are not directly useful. Instead, the output of
the arima function has to be processed by other functions for more informed summa-
ries. For example, (raw) residuals from the fitted model can be computed by the
residuals function via the command residuals(res). Fitted values can be
obtained by running fitted(res). Other useful functions for processing a fitted
ARIMA model from the arima function will be discussed below.

The empirical approach of using the bootstrap to do inference is illustrated below.

set.seed(12345)

This initializes the seed of the random number generator so that the simulation study
can be repeated.

coefm.cond.norm=arima.boot(res,cond.boot=T,is.normal=T,
B=1000,init=sqrt(hare))

The arima.boot function carries out a bootstrap analysis based on a fitted ARIMA
model. Its first argument is a fitted ARIMA model, that is, the output from the arima
function. Four different bootstrap methods are available: The bootstrap series can be ini-
tialized by a supplied value (cond.boot=T) or not (cond.boot=F), and a nonpara-
metric bootstrap (is.normal=F) or a parametric bootstrap assuming normal
innovations (is.normal=T) can be used. For a conditional bootstrap, the initial val-
ues can be supplied as a vector (the arima.boot function will use the initial values
from the supplied vector). The bootstrap sample size, say 1000, is specified by the
B=1000 option. The function arima.boot outputs a matrix with each row being the
bootstrap estimate of the ARIMA coefficients obtained by maximum likelihood estima-
tion with the bootstrap data. So, if B=1000 and the model is an AR(3), then the output
is a 1000 by 4 matrix where each row consists of the bootstrap AR(1), AR(2), and
AR(3) coefficients plus the mean estimate in that order ().

signif(apply(coefm.cond.norm,2,function(x)
{quantile(x,c(.025,.975),na.rm=T)}),3)

This is a compound R statement. It is equivalent to the two commands

temp=apply(coefm.cond.norm,2,function(x)
{quantile (x,c(.025,.975),na.rm=T)})

signif(temp,3)

except that the temporary variable temp is not created in the original compound state-
ment. Recall that the apply function is a general-purpose function for processing a
matrix. Here the apply function processes the matrix coefm.cond.norm column
by column, with each column supplied to the no-name user-supplied function

function(x){quantile(x,c(.025,.975),na.rm=T)}

This no-name function has one input, called x, that is processed by the quantile
function. The quantile function takes a vector and computes the sample quantiles
with the corresponding probability specified in the second argument. The third argu-

φ̂1 φ̂2 φ̂3 μ̂, , ,

446 Appendix: An Introduction to R

ment of the quantile function is specified as na.rm=T (na stands for not available and
rm means remove), which means that any missing values in the input are discarded
before computing the quantiles. This specification is pivotal because by default any
quantile of a dataset with some missing values is defined to be a missing value (NA) in
R. (Some bootstrap series may have convergence problems upon fitting an ARIMA
model and hence the output of the bootstrap function may contain some missing values.)
To return to the interpretation of the command on the right-hand side of temp, it
instructs R to compute the 2.5th and 97.5th percentiles of each bootstrap coefficient esti-
mate. To enable precise calculations, R maintains many significant digits in the numbers
stored in an object. The printed version, however, usually requires fewer significant dig-
its for clarity. This can be done by the signif function. The signif function outputs
the object passed into it as first argument, but only to the number of significant digits
specified in the second argument, which is three in the example. Altogether, the com-
pound R command computes the 95% bootstrap confidence intervals for each AR coef-
ficient.

Chapter 8 R Commands

Exhibit 8.2 on page 177.
data(hare)
m1.hare=arima(sqrt(hare),order=c(3,0,0))
m1.hare

This prints the fitted AR(3) model for the square-root-transformed hare data. The AR(2)
coefficient estimate () turns out not to be significant. Note that the AR(2) coefficient
is the second element in the coefficient vector, as shown in the printout of the fitted
model. A constrained ARIMA model with some elements fixed at certain values can be
fitted by using the fixed argument in the arima function. The fixed argument
should be a vector of the same length as the coefficient vector and its elements set to NA
for all of the free elements but set to zero (or another fixed value) for all of the con-
strained coefficients. For example, here the AR(2) coefficient is constrained to be zero
() and hence fixed=c(NA,0,NA,NA), that is, the AR(1), AR(3), and the
‘‘intercept’’ term are free parameters, whereas the AR(2) is fixed at 0. Remember that
the ‘‘intercept’’ term is last. Below is the command for fitting the constrained AR(3)
model for the hare data.

m2.hare=arima(sqrt(hare),order=c(3,0,0),
fixed=c(NA,0,NA,NA))

m2.hare

Note that the intercept term is actually the mean in the centered form of the ARMA
model; that is, if y = sqrt(hare) − intercept, then the model is

so the “true” estimated intercept equals 5.6889*(1 − 0.919 + 0.5313) = 3.483, as stated
in the text!

φ̂2

φ2 0=

yt 0.919yt 1– 0.5313yt 3–– et+=

Chapter 9 R Commands 447

plot(rstandard(m2.hare),
ylab='Standardized Residuals',type='b')

The function rstandard computes the standardized residuals; that is, the raw residu-
als normalized by the estimated noise standard deviation.

abline(h=0)

adds a horizontal line to the plot with zero y-intercept. Use the help in R to find out how
to add a vertical line with x-intercept = 10.

Exhibit 8.12 on page 185 (prefaced by some commands in
Exhibit 8.1 on page 176)

data(color)
m1.color=arima(color,order=c(1,0,0))
tsdiag(m1.color,gof=15,omit.initial=F)

The tsdiag function in the TSA package has been modified from that in the stats
package of R. It performs model diagnostics on a fitted model. The argument gof spec-
ifies the maximum number of lags in the acf function used in the model diagnostics.
Setting the argument omit.initial=T omits the few initial residuals from the anal-
ysis. This option is especially useful for checking seasonal models where the initial
residuals are close to zero by construction and including them may skew the model
diagnostics. In the example, the omit.initial argument is set to be F so that the
diagnostics are done with all residuals. Recall that the Ljung-Box (portmanteau) test sta-
tistic equals the weighted sum of the squared residual autocorrelations from lags 1 to K,
say; see Equation (8.1.12) on page 184. Assuming that the ARIMA orders are correctly
specified, the validity of the approximate chi-square distribution for the Ljung-Box test
statistic requires that K be larger than the lag beyond which the original time series has
negligible autocorrelation. The modified tsdiag function in the TSA package checks
this requirement; consequently the Ljung-Box test is only computed for sufficiently
large K. If the required K is larger than the specified maximum lag, tsdiag will return
an error message. This problem can be solved by increasing the maximum lag asked for.
Use ?tsdiag to learn more about the modified tsdiag function.

Chapter 9 R Commands

Exhibit 9.2 on page 205.
data(tempdub)

tempdub1=ts(c(tempdub,rep(NA,24)),start=start(tempdub),
freq=frequency(tempdub))

This appends two years of missing values to the tempdub data, as we want to forecast
the temperature for two years into the future. The function start extracts the starting
date of a time series. The function frequency extracts the frequency of the time series
passed to it, here being 12. Hence, tempdub1 contains the Dubuque temperature series
augmented by two years of missing data, with the same starting date and frequency of
sampling per unit time interval.

har.=harmonic(tempdub,1)

This creates the first pair of harmonic functions.

448 Appendix: An Introduction to R

m5.tempdub=arima(tempdub,order=c(0,0,0),xreg=har.)

This fits the harmonic regression model using the arima function. The covariates are
passed to the function through the xreg argument. In the example, har. is the covari-
ate and the arima function fits a linear regression model of the response variable on the
covariate, with the errors assumed to follow an ARIMA model. Because the specified
ARIMA orders p = d = q = 0, the presumed error structure is white noise; that is, the
arima function fits an ordinary linear regression model of tempdub on the first pair
of harmonic functions. Note that the result is the same as that from the fit using the lm
function, which can be verified by the following commands:

har.=harmonic(tempdub,1); model4=lm(tempdub~har.)
summary(model4)

The xreg argument expects the covariate input either as a matrix or a
data.frame. A data.frame can be thought of as a matrix made up by binding
together several covariates column by column. It can be created by the data.frame
function with multiple arguments, each of which takes the form covariate.name =
R statement for computing the covariate. If the covariate.name is omitted, the
R statement becomes the covariate name, which may be undesirable for a complex
defining statement. If the R statement is a matrix, its columns are taken as covariates
with the column names taken as the covariate names. Consider the example of augment-
ing the harmonic regression model above by a linear time trend. The augmented model
can be fitted by the command

arima(tempdub,order=c(0,0,0),
xreg=data.frame(har.,trend=time(tempdub)))

m5.tempdub

This prints the fitted model.
We now illustrate prediction with an example.

newhar.=harmonic(ts(rep(1,24), start=c(1976,1),freq=12),1)

This creates the harmonic functions over two years starting from January 1976. Remem-
ber that the tempdub series ends in December 1975.

plot(m5.tempdub,n.ahead=24,n1=c(1972,1),newxreg=newhar.,
col=’red’, type=’b’,ylab='Temperature',xlab='Year')

This computes and plots the forecasts based on the fitted model passed as the first argu-
ment. Here, we specify a forecast for 24 steps ahead through the argument
n.ahead=24. The covariate values over the period of forecast have to be supplied by
the newxreg argument. The newxreg argument should match the xreg argument in
terms of the covariates except that their values are from different periods. The plot may
be drawn with a starting date different from the start date of the time series data by using
the n1 argument. Here, n1=c(1972,1) specifies January 1972 as the start date for
the plot. For nonseasonal data (that is, frequency = 1), n1 should be a scalar. The col
and type arguments refer to the color and style of the plotted lines.

Exhibit 9.3 on page 206.
data(color)
m1.color=arima(color,order=c(1,0,0))

Chapter 9 R Commands 449

plot(m1.color,n.ahead=12,col='red',type='b',xlab='Year',
ylab='Temperature')

abline(h=coef(m1.color)
[names(coef(m1.color))=='intercept'])

The final command adds the horizontal line at the estimated mean (intercept). This is a
complex statement. The expression coef(m1.color) extracts the coefficient vector.
The components of the coefficient vector are named. The names of a vector can be
extracted by the names function, so names(coef(m1.color)) returns the vector of
names of the components of the coefficient vector. The == operator compares the two
vectors on its two sides element by element, resulting in a vector consisting of TRUEs
and FALSEs depending on whether the elements are equal or not. (If the vectors under
comparison are of unequal length, R recycles the shorter one repeatedly to match the
longer one.) Hence, the command

[names(coef(m1.color))== 'intercept']

returns a vector with the TRUE value in the position in which the “intercept” component
lies and with all other elements FALSE. Finally, the intercept coefficient estimate is
extracted by the “bracket” operation:

coef(m1.color)[names(coef(m1.color))=='intercept']

The operation within brackets subsets a vector using one of two mechanisms. Let v be a
vector. A subvector of it can be formed by the command v[s], where s is a Boolean
vector, (that is, consisting of TRUEs and FALSEs) that is of the same length as v. The
vector v[s] is then a sub-vector of v consisting of those elements of v for which the
corresponding element in s is TRUE; elements in v whose corresponding element in s
is FALSE are discarded from v[s].

A second way to subset a vector is to construct s so that it contains the position of
the elements to be retained and v[s] will return the desired subvector. A variation of
this approach is to form a subvector by deletion. Unwanted elements are designated by
giving their positions multiplied by -1. An illustration follows.

> v=1:5

This creates a vector containing the first five positive integers.

> v
[1] 1 2 3 4 5

> names(v)
NULL

By default, the components of v are unnamed, so names(v) returns an empty vector
denoted by the object NULL.

> names(v)=c('A','B','C','D','E')
This is the method of assigning names to the components of a vector.

> v
A B C D E
1 2 3 4 5

The command

> names(v)=='C'

450 Appendix: An Introduction to R

[1] FALSE FALSE TRUE FALSE FALSE
finds which components of names(v) is “C.”
The command

> v[names(v)=='C']
C
3

subsets v by Boolean extraction.
The command
> v[3]
C
3

subsets v by supplying the positions of the retained elements.
The command
> v[-3]
A B D E
1 2 4 5

subsets v by supplying the positions of the unwanted elements.

Chapter 10 R Commands

The theoretical ACF of a stationary ARMA process can be computed by the ARMAacf
function. The ar parameter vector, if present, is to be passed into the function via the ar
argument. Similarly, the ma parameter vector is passed into the function via the ma
argument. The maximum lag may be specified by the lag.max argument. Setting the
pacf argument to TRUE computes the theoretical pacf; otherwise the function com-
putes the theoretical acf. Consider as an example the seasonal MA model:

Note that (1 + 0.5B)(1 + 0.8B12) = (1 + 0.5B + 0.8B12 + 0.4B13) so the ma coefficients
are specified by the option ma=c(0.5,rep(0,10),0.8,0.4). Its theoretical ACF
is displayed on the left side of Exhibit 10.3, which can be done by the following R com-
mands.

plot(y=ARMAacf(ma=c(0.5,rep(0,10),0.8,0.4),
lag.max=13)[-1],x=1:13,type='h',

xlab='Lag k',ylab=expression(rho[k]),axes=F,ylim=c(0,0.6))
points(y=ARMAacf(ma=c(0.5,rep(0,10),0.8,0.4),

lag.max=13)[-1],x=1:13,pch=20)
abline(h=0)
axis(1,at=1:13,

labels=c(1,NA,3,NA,5,NA,7,NA,9,NA,11,NA,13))
axis(2)
text(x=7,y=.5,labels=expression(list(theta&=&-0.5,

Theta&=&-0.8)))

As the labeling of the figure requires Greek alphabets and subscripts, the label
information has to be passed via the expression function. Run the help menu

Yt 1 0.5B+() 1 0.8B12+()et=

Chapter 11 R Commands 451

?plotmath to learn more about how to do mathematical annotations in R.

Exhibit 10.10 on page 237
m1.co2=arima(co2,order=c(0,1,1),

seasonal=list(order=c(0,1,1),period=12))

The argument seasonal supplies the information on the seasonal part of the seasonal
ARIMA model. It expects a list with the seasonal order supplied in the component
named order and the seasonal period entered via the period component, so the com-
mand above instructs the arima function to fit a seasonal ARIMA (0,1,1) × (0,1,1)12
model to the co2 series.

m1.co2

This prints a summary of the fitted seasonal ARIMA model.

Chapter 11 R Commands

Exhibit 11.5 on page 255.

acf(as.vector(diff(diff(window(log(airmiles),
end=c(2001,8)),12))),lag.max=48)

The expression window(log(airmiles),end=c(2001,8)) subsets the
log(airmiles) time series by specifying a new end date of August 2001. The sub-
time series is first seasonally differenced with lag 12 and then regularly differenced. The
doubly differenced series is then passed to the acf function for computing the sample
ACF out to 48 lags.

Exhibit 11.6 on page 255.
air.m1=arimax(log(airmiles),order=c(0,1,1),seasonal=

list(order=c(0,1,1),period=12),
xtransf=data.frame(I911=1*(seq(airmiles)==69),
I911=1*(seq(airmiles)==69)),
transfer=list(c(0,0),c(1,0)),
xreg=data.frame(Dec96=1*(seq(airmiles)==12),
Jan97=1*(seq(airmiles)==13),
Dec02=1*(seq(airmiles)==84)),method='ML')

The arimax function extends the arima function so that it can handle intervention
analysis and outliers (both AO and IO) in time series. It is assumed that the intervention
affects the mean function of the process, with the deviation from the unperturbed mean
function modeled as the sum of the outputs of an ARMA filter of a number of covari-
ates; the deviation is known as the transfer function. The covariates making up the trans-
fer function are passed to the arimax function via the xtransf argument in the form
of a matrix or a data.frame. For each such covariate, its contribution to the transfer
function takes the form of a dynamic response given by

The transfer function is the sum of the dynamic responses, in the form of some ARMA
filter, of all covariates in the xtransf argument. The ARMA order of the filter is

a0 a1B … aqBq+ + +()

1 b1B– b2B2– … bpBp––()
---covariatet

452 Appendix: An Introduction to R

denoted by the vector c(p,q). If p = q = 0 (that is, c(p,q) = c(0,0)), the contribu-
tion of the covariate is of the form . If c(p,q) = c(1,0), the output
becomes

The ARMA orders for the dynamic components of the transfer function are supplied via
the transf argument as a list containing the vectors of ARMA orders in the order
of the covariates defined in the xtransf argument. Hence, the options:

xtransf=data.frame(I911=1*(seq(airmiles)==69),
I911=1*(seq(airmiles)==69)),
transfer=list(c(0,0),c(1,0))

instruct the arimax function to create two identical covariates called I911, which is
an indicator variable, say Pt, that equals 1 in September 2001 and 0 otherwise, and the
transfer function is the sum of two ARMA filters of the 9/11 indicator variable of
orders c(0,0) and c(1,0) respectively. Hence the transfer function equals

This is equivalent to an ARMA(1,1) filter of the form

which can be specified by the following options

xtransf=data.frame(I911=1*(seq(airmiles)==69)),
transfer=list(c(1,1))

Additive outliers (AO) in a time series can be incorporated as indicator variables
passed to the xreg argument. For example, three potential AOs are included in the
model by the following supplied argument:

xreg=data.frame(Dec96=1*(seq(airmiles)==12),
Jan97=1*(seq(airmiles)==13),
Dec02=1*(seq(airmiles)==84))

Note that the first potential outlier occurs in December 1996. The corresponding indica-
tor variable is labeled as Dec96 and is computed by the formula
1*(seq(airmiles)==12), which results in a vector that equals 0 except its twelfth
element, which equals 1, and the vector is of the same length as airmiles. Some spe-
cifics of this “simple” command follow. The function seq creates a vector consisting of
the first n positive integers, where n is the length of the vector passed to the seq func-
tion. The expression seq(airmiles)==12 creates a vector of the same length as
airmiles, and its elements are all FALSE except that the twelfth element is TRUE.
Then 1*(seq(airmiles)==12) is an arithmetic expression for which R automati-
cally converts any imbedded Boolean vector (seq(airmiles)==12) to a binary
vector. Recall that the TRUE values are converted to 1s and the FALSE values to 0s.

a0covariatet

a0

1 b1B–()
-----------------------covariatet a0 covariatet b1covariatet 1– b1

2covariatet 2–
…+ + +()=

ω0Pt

ω1

1 ω2B–()
------------------------Pt+

ω0 ω1+() ω0ω2B–{ }
1 ω2B–()

---Pt

Chapter 11 R Commands 453

Multiplying by 1 does not alter the converted binary vector. Indeed, multiplication is
employed to trigger the conversion from the Boolean values to binary values.

For this example, the unperturbed process is assumed to be an IMA(1,1) process, as
is evident from the supplied argument order=c(0,1,1). In general, a seasonal
ARIMA unperturbed process is specified in the same way that it is specified for the
arima function.

air.m1

This prints out the fitted intervention model, as displayed below.

> air.m1
Call: arimax(x=log(airmiles),order=c(0,1,1),seasonal=

list(order=c(0,1,1),period=12),xreg=data.frame(Dec96=
1*(seq(airmiles)==12),Jan97=1*(seq(airmiles)==13),
Dec02=1*(seq(airmiles)==84)),method='ML',
xtransf=data.frame(I911=1*(seq(airmiles)==69),I911=1*
(seq(airmiles)==69)),transfer=list(c(0,0),c(1,0)))

Coefficients:
ma1 sma1 Dec96 Jan97 Dec02 I911-MA0 I911.1-AR1 I911.1-MA0

-0.3825 -0.6499 0.0989 -0.0690 0.0810 -0.0949 0.8139 -0.2715
s.e. 0.0926 0.1189 0.0228 0.0218 0.0202 0.0462 0.0978 0.0439
sigma^2 estimated as 0.000672: log likelihood=219.99, aic=-423.98

Note that the parameter in the transfer-function component defined by the first instance
of the indicator variable I911 is labeled as I911-MA0; that is, the MA(0) coefficient.
The transfer-function components defined by the second instance of the indicator vari-
able I911 are labeled as I911.1-AR1 and I911.1-MA0. These are the AR(1) and
MA(0) coefficient estimates.

We can also try the equivalent parameterization of specifying an ARMA(1,1) filter
on the 9/11 indicator variable.

> air.m1a=arimax(log(airmiles),order=c(0,1,1),
seasonal=list(order=c(0,1,1),period=12),
xtransf=data.frame(I911=1*(seq(airmiles)==69)),
transfer=list(c(1,1)),
xreg=data.frame(Dec96=1*(seq(airmiles)==12),
Jan97=1*(seq(airmiles)==13),
Dec02=1*(seq(airmiles)==84)),method='ML')

> air.m1a
Call: arimax(x=log(airmiles),order=c(0,1,1),seasonal=

list(order=c(0,1,1),period=12),xreg=data.frame(Dec96=1
(seq(airmiles)==12),Jan97=1(seq(airmiles)==13),Dec02=
1*(seq(airmiles)==84)),method='ML',xtransf=
data.frame(I911=1*(seq(airmiles)==69)),transfer=
list(c(1,1)))

Coefficients:
ma1 sma1 Dec96 Jan97 Dec02 I911-AR1 I911-MA0 I911-MA1

-0.3601 -0.6130 0.0949 -0.0840 0.0802 0.8094 -0.3660 0.0741
s.e. 0.0926 0.1261 0.0222 0.0229 0.0194 0.0924 0.0233 0.0424
sigma^2 estimated as 0.000648: log likelihood=221.76, aic=-427.52

454 Appendix: An Introduction to R

Note that the parameter estimates of this model are similar to those of the previous
model but this model has a better fit, which may happen as the optimization is done
numerically.

Exhibit 11.8 on page 256.
Nine11p=1*(seq(airmiles)==69)

This defines the 9/11 indicator variable.

plot(ts(Nine11p*(-0.0949)+ filter(Nine11p,filter=.8139,
method='recursive',side=1)*(-0.2715),
frequency=12,start=1996),type='h',ylab='9/11 Effects')

The command

Nine11p*(-0.0949)+filter(Nine11p,filter=.8139,
method='recursive',side=1)*(-0.2715)

computes the estimated transfer function. Note that the command

filter(Nine11p,filter=.8139,method=’recursive’,side=1)

computes (1-0.8139*B)Nine11p. The function filter performs an MA or AR
filtering on the input sequence passed to it as the first argument. Suppose the input is a
vector x = c(x1,x2,…,xn). Then the output y = c(y1,y2,…,yn) defined by the MA filter

can be computed by the command

filter(x,filter=c(c0,c1,...,cq),side=1).

The argument side=1 specifies that the MA operator works on current and past values
when computing an output value. To compute y1, the value of x0 is needed. Since the
latter is not observed, the filter sets it to NA, and hence y1 is also NA. In this case, y2,
y3, and so forth can be computed. For an AR filtering with the output defined recur-
sively by the equation

the R command is

filter(x,filter=c(c1,c2,...,cp),method='recursive',
side=1)

Note that, unlike the case of the MA filter, the filter vector starts with c1 and there is no
c0 in the equation. The argument method='recursive' signifies an AR type of fil-
tering. For the AR filter, the initial values cannot be set to NA, lest all output values be
NA! The default initial values are zeros although other initial values may be specified via
the init argument.

abline(h=0)

adds a horizontal line with zero y-intercept.

Exhibit 11.9 on page 259.
set.seed(12345)
y=arima.sim(model=list(ar=.8,ma=.5),n.start=158,n=100)

yt c0xt c1xt 1–
… cqxt q–+ + +=

yt xt c1yt 1– … cpyt p–+ + +=

Chapter 11 R Commands 455

This simulates an ARMA(1,1) series of sample size 100. To remove transient effects of
the initial values, a burn-in of size 158 is specified. A large burn-in of the order of hun-
dreds should generally ensure that the simulated process is approximately stationary.
The number 158 is chosen for no particular good reason.

y[10]

This prints out the tenth simulated value.

y[10]=10

This alters the tenth value to be 10; that is, it becomes an additive outlier, mimicking the
effect of a clerical recording mistake, for example!

y=ts(y,freq=1,start=1); plot(y,type=’o’)
acf(y)
pacf(y)
eacf(y)

This exploratory analysis suggests an AR(1) model.

m1=arima(y,order=c(1,0,0)); m1; detectAO(m1)

This detects the presence of any additive outliers (AO) in the fitted AR(1) model. The
test requires an estimate of the standard deviation of the error (innovation) term, which
by default is estimated by a robust estimation scheme, resulting in a more powerful test.
The robust estimation scheme can be switched off by the argument robust=F, as illus-
trated in the command below.

detectAO(m1, robust=F)

This verifies that a nonrobust procedure is less powerful.

detectIO(m1)

This detects the presence of any innovative outliers (IO) in the fitted AR(1) model. As
an AO is found in the tenth case, it is incorporated as an indicator covariate in the fol-
lowing model.

m2=arima(y,order=c(1,0,0),xreg=data.frame(AO=seq(y)==10))
m2

Exhibit 11.10 on page 260
data(co2)
m1.co2=arima(co2,order=c(0,1,1),seasonal=list

(order=c(0,1,1),period=12))
m1.co2
detectAO(m1.co2)
detectIO(m1.co2)

As an IO is found in the 57th data case, it is incorporated in the model.

m4.co2=arimax(co2,order=c(0,1,1),
seasonal=list(order=c(0,1,1),period=12),io=c(57))

The epochs of IOs are passed to the arimax function via the io argument, which
expects a list containing the positions of the IOs either as the time index of the IO or
as a vector in the form of c(year,month) that gives the year and month of the IO for
seasonal data; the latter format also works similarly for seasonal data of other types. For

456 Appendix: An Introduction to R

a single IO, it is not necessary to enclose the single vector of index in a list before pass-
ing it to the io argument.

Exhibit 11.11 on page 262.
set.seed(12345)
X=rnorm(105)
Y=zlag(X,2)+.5*rnorm(105)

The command zlag(X,2) computes the second lag of X.

X=ts(X[-(1:5)],start=1,freq=1)

This omits the first five values of X and converts the remaining values to form a time
series.

Y=ts(Y[-(1:5)],start=1,freq=1)
ccf(X,Y,ylab='CCF')

This computes the cross-correlation function of X and Y. The ylab argument is sup-
plied in lieu of the default y-label of the ccf function that is “ACF”.

Exhibit 11.14 on page 264.
data(milk)
data(electricity)
milk.electricity=ts.intersect(milk,log(electricity))

The ts.intersect function merges several time series into a matrix (panel) of time
series over the time frame where each series has data. The object milk.electric-
ity is a matrix of two time series, the first column of which is the milk series and the
second the log of electricity, over the time period when these two series overlap.

plot(milk.electricity,yax.flip=T)

The option yax.flip=T flips the label for the y-axis for the series alternately so as to
make the labeling clearer.

Exhibit 11.15 on page 265.
ccf(milk.electricity[,1],milk.electricity[,2],

main='milk & electricity',ylab='CCF')

The expression milk.electricity[,1] extracts the milk series and
milk.electricity[,2] the log electricity series.

The as.vector function strips the time series attribute from the time series. This
is done to nullify the default way that the ccf function plots the cross-correlations. You
may want to repeat the command without the as.vector function to see the default
labels of the lags according to the period of the data.

ccf((milk.electricity[,1]),(milk.electricity[,2]),
main='milk & electricity',ylab='CCF')

The bracket operator extracts a submatrix from a matrix, say M, in the form of
M[v1,v2], where v1 indicates which rows are kept and v2 indicates which columns
are retained. Consequently, the submatrix M[v1,v2] contains all elements of M in the
intersection of the retained rows and columns. If v1 (v2) is missing, then all rows (col-
umns) are retained. Hence, M[,1] is simply the submatrix consisting of the first col-
umn of M. However, R adopts the convention that a submatrix with a single row or
column is “demoted” to a vector; that is, it loses one dimension. This convention makes

Chapter 12 R Commands 457

sense in most cases. However, if you do matrix algebra in R, this convention may result
in strange error messages! To prevent automatic dimension reduction, use
M[v1,v2,drop=F]. Instead of specifying which rows or columns are to be retained
in the submatrix, you can specify which rows or columns are to be deleted by specifying
the negative of their positions. Or v1 (v2) can be specified as a Boolean vector, where
the positions to be retained (eliminated) are denoted by TRUE (FALSE).

Exhibit 11.16 on page 267.
me.dif=ts.intersect(diff(diff(milk,12)),

diff(diff(log(electricity),12)))
prewhiten(as.vector(me.dif[,1]),as.vector(me.dif[,2]),

ylab='CCF')

The prewhiten function expects two time series input via the x and y arguments.
Both series will be filtered according to an ARIMA model. The ARIMA model can be
supplied via the x.model argument and should be the output of the arima function. If
no ARIMA model is supplied, an AR model will be fitted to the x series, with the AR
order selected by minimizing the AIC. The prewhiten function computes and plots
the cross-correlation function (CCF) of the residuals of the x series and those of the y
series from the same (supplied or fitted) model.

Chapter 12 R Commands

Below, we show how to implement the Jarque-Bera test for normality in two different
ways. First, we show the direct approach.

skewness(r.cref)

This computes the skewness of the r.cref series.

kurtosis(r.cref)

This computes the kurtosis of the data.

length(r.cref)*skewness(r.cref)^2/6

The function length returns the length of the vector (time series) passed into it, so the
expression above computes the first part of the Jarque-Bera statistic.

length(r.cref)*kurtosis(r.cref)^2/24

computes the second half of the Jarque-Bera statistic.

JB=length(r.cref)*(skewness(r.cref)^2/6 +
kurtosis(r.cref)^2/24)

The object JB then contains the Jarque-Bera statistic and the command JB prints out the
statistic. The command 1-pchisq(JB,df=2) computes the p-value of the
Jarque-Bera test for normality. The function pchisq computes the cumulative proba-
bility of a chi-square distribution being less than or equal to the value in the first argu-
ment. The df argument of the pchisq function specifies the degrees of freedom for
the chi-square distribution. Because the p-value equals the right tail area, it equals 1
minus the cumulative probability. Besides pchisq, other functions associated with the
chi-square distribution include qchisq, which computes quantiles; dchisq, which

458 Appendix: An Introduction to R

computes the probability density; and rchisq, which simulates realizations from the
chi-square distributions. Use Help in R to learn more about these functions. For other
probability distributions, similar functions are available. Associated with the normal
distributions are rnorm, pnorm, dnorm, and qnorm. Check out the usages of the rel-
evant functions for the binomial (binom), Poisson, and other distributions.

library(tseries)

This loads the tseries library, which contains a number of functions needed for the
analysis reported in this chapter. Run library(help=tseries) for more informa-
tion about the tseries package.

jarque.bera.test(r.cref)

This carries out the Jargue-Bera test for normality with the time series r.cref.

Exhibit 12.9 on page 283.
McLeod.Li.test(y=r.cref)

This performs the McLeod-Li test for presence of ARCH in the daily CREF returns. The
first two arguments of the function are object and y, respectively. For the test with
raw data, the time series is supplied to the function via the y argument. Then, the func-
tion computes the Box-Ljung statistics with the autocorrelations of the squared data to
detect for conditional heteroscedascity. The test is carried out with the first m autocorre-
lations of the squared data, with m ranging from 1 to the maximum lag specified by the
gof.lag argument. If the gof.lag argument is missing, the default is set to
nlog10(n) where n is the sample size.

The McLeod-Li test can also be applied to residuals from an ARMA model fitted to
the data. For example, the US dollar/Hong Kong dollar exchange rate data was found to
admit an AR(1) + outlier model. The need for incorporating ARCH in the model for
the exchange rate data can be tested by the command

McLeod.Li.test(arima(hkrate,order=c(1,0,0),
xreg=data.frame(outlier1)))

Note that object is the first argument so in the above command, the fitted AR(1) + out-
lier model is passed into the function. The function then computes the test statistics
based on the squared residuals from the fitted AR(1) + outlier model. If the object argu-
ment is supplied explicitly or implicitly, the y argument is ignored by the function even
if it is supplied. Remember that to apply the test to raw data, the y argument must be
supplied and the object argument suppressed.

Exhibit 12.11 on page 286.
set.seed(1235678)
garch01.sim=garch.sim(alpha=c(.01,.9),n=500)

The garch.sim function simulates a GARCH process, with the ARCH coefficients
supplied via the alpha argument and the GARCH coefficients via the beta argument.
The sample size is passed into the function via the n argument. In the example above,
alpha=c(.01,.9) specifies that the constant term is 0.01 and the ARCH(1) coeffi-
cient equals 0.9. So, garch01.sim saves a realization from an ARCH(1) process.

Exhibit 12.25 on page 300.
m1=garch(x=r.cref,order=c(1,1))

Chapter 12 R Commands 459

This fits a GARCH(1,1) model with the r.cref series. The garch function estimates
a GARCH model by maximum likelihood. The time series is supplied into the function
by the x argument and the GARCH order by the order argument. The order takes
the form c(p,q) where p is the GARCH order and q the ARCH order.

summary(m1)

This summarizes the fitted GARCH(1,1) model. Ignore the Box-Ljung test results
reported in the summary, as the generalized portmanteau tests should be used; see the
book.

Exhibit 12.29 on page 305.
gBox(m1,method='squared')

The gBox function computes the generalized portmanteau test for checking whether or
not there is any residual heteroscedasticity in the residuals of a fitted GARCH model. It
requires supplying the fitted GARCH model from the garch function through the first
argument (the model argument, the first argument of the function). By default, the tests
are carried out with the squared residuals from the fitted GARCH model. To inspect
absolute residuals, use the option method='absolute'. By default, the test is car-
ried out for the ACF for lags from 1 to, say, K, where K runs from 1 to 20. The collection
of K’s can be specified by the lags argument. For example, to carry out the test for K
ranging from 1 to 30, supply the option lags=1:30.

gBox(m1,lags=20,plot=F,x=r.cref, method='squared')$pvalue

prints out the p-values of the generalized portmanteau test with the squared residuals
and K = 20; that is, it tests any residual heteroscedasticity based on the first 20 lags of
residual ACF of the squared residuals from the fitted GARCH model. Plotting is
switched off by the plot=F option. The gBox function returns a list, an element of
which is named pvalue and contains the p-values of the test for each K. Thus, the
command prints out the p-value for the test with K = 20.

Exhibit 12.30 on page 306.
acf(abs(residuals(m1)),na.action=na.omit)

As the initial residuals from a fitted GARCH model may be missing, it is essential to
instruct the ACF to omit all missing values through the argument na.action=
na.omit (the preferred action when encountering a missing value is to omit it). If this
argument is omitted, the acf function uses all data and will return missing values if
there are any missing data.

Overfitting the GARCH(1,2) model to the CREF returns can be carried out by the
following command

m2=garch(x=r.cref,order=c(1,2))
summary(m2,diagnostics=F)

The summary is based on the summary.garch function in the tseries package.
Note that the p-values of the Ljung-Box test from the summary are invalid; the general-
ized portmanteau tests should be used instead. Hence, the diagnostics are turned off.

AIC(m2)

This computes the AIC of the fitted GARCH model m1.

460 Appendix: An Introduction to R

Exhibit 12.31 on page 306.
gBox(m1,x=r.cref,method='absolute')

This carries out the generalized portmanteau test based on the absolute residuals.

shapiro.test(na.omit(residuals(m1)))

This computes the Shapiro-Wilk test for normality with the residuals from the fitted
model m1. The function na.omit strips all missing values from the residuals. Thus,
the test is carried out with the nonmissing residuals. Without preprocessing the residuals
by the na.omit function, the test may return a missing value if some of the residuals
are missing!

Exhibit 12.32 on page 307.
plot((fitted(m1)[,1])^2,type='l',

ylab='conditional variance',xlab='t')

The fitted function is a smart function that processes differently depending on the
fitted model passed to it as the first argument. If the fitted model is some output from the
garch function, the default output from the fitted function is a two-column matrix
whose first column contains the one-step-ahead conditional standard deviations. Hence,
their squares are the conditional variances. So (fitted(m1)[,1])^2 computes the
time series of estimated one-step-ahead conditional variances based on the model m1.

Chapter 13 R Commands

Exhibit 13.3 on page 323.

The periodogram of a time series can be computed and plotted by the function peri-
odogram into which the data are passed as its first argument.

sp=periodogram(y); abline(h=0);
axis(1,at=c(0.04167,.14583))

The function periodogram has several useful arguments. Setting log='yes' tells
R to plot on a log scale, whereas log='no' (the default) says to plot on a linear scale.
Other arguments for the plot function may be passed into the function to make better
graphs. The function axis draws an axis with the first argument specifying the side on
which the axis is drawn. The sides are labeled from 1 to 4 starting from the bottom in a
clockwise direction. The vector of locations of the tick marks can be specified by the at
argument. The command above instructs R to draw an (additional) axis on the bottom of
the figure with tick marks placed at 0.04167 and 0.14583.

Exhibit 13.9 on page 333.
theta=.9 # Reset theta for other MA(1) plots
ARMAspec(model=list(ma=-theta))

The function ARMAspec calculates and plots the theoretical spectral density function of
the ARMA model supplied to the function as the first argument. Recall that R uses the
plus convention in the MA specification, so the minus sign is added to theta. The format
of the model is the same as that for the arima function.

Chapter 14 R Commands 461

Chapter 14 R Commands

Exhibit 14.2 on page 353.

The spec function can estimate the spectral density function by locally averaging the
periodogram via some suitable kernel function. The function spec has several useful
arguments. Setting log='yes' tells R to plot on a log scale whereas log='no' says
to plot on a linear scale. Data may be detrended (fitting a linear time trend) by setting
detrend=T, and tapering may be enforced by setting taper to some fraction between 0
and 0.5. The default options are: taper=0 and detrend=F.

k=kernel('daniell',m=15)

Here, the object k contains the Daniell kernel function with halfwidth 15. Use Help in R
to learn more about the kernel function.

sp=spec(y,kernel=k,log='no',sub='',
xlab='Frequency',ylab='Smoothed Sample Spectral Density')

Specifying the kernel to be the Daniell kernel function instructs R to compute and plot
the spectral density estimate, where the estimate at a certain frequency is obtained by
averaging the current (raw) periodogram value, the neighboring 15 periodogram values
on its left, and another 15 periodogram values on its right. More or less local averaging
can be specified through the m argument in the kernel function.

lines(sp$freq,ARMAspec(model=list(ar=phi),freq=sp$freq,
plot=F)$spec,lty='dotted')

This adds the theoretical spectral density function.

Exhibits 14.11 and 14.12, page 364.
Spectral analysis of simulated series
set.seed(271435)
n=100
phi1=1.5; phi2=-.75 # Reset parameter values to obtain

Exhibits 14.13 & 14.14
y=arima.sim(model=list(ar=c(phi1,phi2)),n=n)

This simulates an AR(2) time series of length 100.

sp1=spec(y,spans=3,sub='',lty='dotted', xlab='Frequency',
ylab='Log(Estimated Spectral Density)')

This estimates the special density function using the modified Daniell kernel (the
default kernel when the kernel argument is missing and the spans argument is sup-
plied). The spans argument supplies the width of the kernel function; that is, it is twice
the m argument in the kernel function plus 1. Here, spans=3 specifies local averaging
of three consecutive periodogram values. Note that local averaging may be repeated by
passing a vector as the value of spans. For example, setting spans=c(3,5) per-
forms local averaging twice. The estimated function obtained by local averaging with
spans=3 is then averaged again locally with spans=5. Repeated averaging with a
modified Daniell (rectangular) kernel is similar to averaging using a bell-shaped kernel
due to the Central Limit effect.

462 Appendix: An Introduction to R

sp2=spec(y,spans=9,plot=F)

This computes the spectrum estimate using a wider window encompassing nine peri-
odogram values without plotting via the plot=F argument. The output of the spec
function is saved into an object named sp2.

sp3=spec(y,spans=15,plot=F)

This uses an even wider window. How many periodogram values are included in each
local averaging?

lines(sp2$freq,sp2$spec,lty='dashed')

This plots the smoother spectrum estimate (spans=9) as a dashed line.

lines(sp3$freq,sp3$spec,lty='dotdash')

This plots the smoothest spectrum estimate (spans=15) as a dotdash line.

f=seq(0.001,.5,by=.001)

This creates an arithmetic sequence starting from 0.001 and ending at 0.5, with incre-
ments 0.001, which is then saved into the object f.

lines(f,ARMAspec(model=list(ar=c(phi1,phi2)),freq=f,
plot=F)$spec,lty='solid')

This plots the theoretical spectral density function for the specified ARMA model as
connected line segments on top of the estimated spectral density plot.

Exhibit 14.12 on page 365.
sp4=spec(y,method='ar',lty='dotted', xlab='Frequency',

ylab='Log(Estimated AR Spectral Density)')

This estimates the spectral density function using the theoretical spectral density func-
tion of an AR model fitted to the data by minimizing the AIC.

f=seq(0.001,.5,by=.001)
lines(f,ARMAspec(model=list(ar=c(phi1,phi2)),

freq=f,plot=F)$spec,lty='solid')

This plots the theoretical spectral density function.

sp4$method

This displays the order of the AR model selected.

 Chapter 15 R Commands

Exhibit 15.1 on page 386.
set.seed(2534567)
par(mfrow=c(3,2))
y=arima.sim(n=61,model=list(ar=c(1.6,-0.94),ma=-0.64))

This simulates an ARMA(2,1) series of sample size 61.

lagplot(y)

This plots the lagged regression plots, where the time series is plotted against its lags
and a smooth curve is superimposed on each scatter diagram. The smooth curves are
obtained by local linear fits to the data. By increasing the value specified in the nn argu-

Chapter 15 R Commands 463

ment (default nn=0.7), the local fitting scheme uses more local data, resulting in a
smoother fit that is likely to be more biased but less variable due to more smoothing. On
the contrary, decreasing the value in the nn argument leads to a rougher fit that is less
biased but more variable due to less smoothing. The smooth curve in the scatter diagram
of the time series response versus its lag j estimates the conditional mean response given
its lag j as a function of the value of the lag j of the response. By default, lagplot
plots the lagged regression plot for lags 1 to 6. More lags can be computed via the
lag.max argument. For instance, lag.max=12 computes the lagged regression plots
for lags 1 through 12. Note that the lagplot function requires the installation of the
locfit package of R.

Exhibit 15.2 on page 387.
data(veilleux)

The dataset veilleux is a matrix consisting of two time series. Its first column is the
series of Didinium abundance and the second column the series of Paramecium abun-
dance, each counted every 12 hours. The basic time unit is days, so these are series of
frequency 2, as they are sampled twice per day.

predator=veilleux[,1]

This defines the predator series as the abundance series of Didinium.

plot(log(predator),lty=2,type='b',xlab='Day',
ylab='Log(predator)')

This plots the entire log-transformed predator series as a dashed line.

predator.eq=window(predator,start=c(7,1))

This subsets the “stationary” part of the predator series that appears to begin on the sev-
enth day of the experiment. Subsequent analyses of the predator series reported in the
text were done with this log-transformed stationary subseries.

lines(log(predator.eq))

This draws the stationary part as a solid line.

index1=zlag(log(predator.eq),3)<=4.661

The command zlag(log(predator.eq),3) returns the lag 3 of the (log-trans-
formed) predator series. The expression zlag(log(predator.eq),3)<=4.661
computes a Boolean vector whose elements are TRUE if and only if their corresponding
element of the lag 3 of the predator series is less than or equal to 4.661. The Boolean
vector is saved in an object named index1. Other comparison operators, including >=,
>, <, and ==, can be used to compare the vectors on the two sides of the comparison
operator. In the example above, the left-hand side of <= is a vector, but its right-hand
side is a scalar! The discrepancy is resolved by the recycling rule, that R replicates the
shorter vector repeatedly to match its longer part. Note that the equality operator is
denoted by the double equal sign ==, as the single equal sign represents the assignment
operator!

464 Appendix: An Introduction to R

points(y=log(predator.eq)[index1],(time(predator.eq))
[index1],pch=19)

This draws as solid circles (pch=19) those data points whose lag 3 of the predator
abundance is less than or equal to 4.661. Run the command ?points to learn other
styles for plotting data points.

Tests for nonlinearity, page 390.
Keenan.test(sqrt(spots))

This carries out Keenan’s test for linearity. The working order of the AR process under
the null hypothesis of linearity can be supplied via the order argument. For example,
order=2 sets the working AR order to 2. If the order argument is missing, the order is
automatically determined by minimizing the AIC via the ar function. The ar function
by default estimates the models by solving the Yule-Walker equations. But other estima-
tion methods may be used by including the method argument when calling the
Keenan.test function; for example, method='mle' specifies using maximum
likelihood in the ar function.

Tsay.test(sqrt(spots)), page 390.

This implements Tsay’s test for linearity; see Tsay (1986). The design of the
Tsay.test function and its arguments are similar to those of the Keenan.test
function.

Exhibit 15.6 on page 400.
y=qar.sim(n=100,const=0.0,phi0=3.97,

phi1=-3.97,sigma=0,init=.377)

The function qar.sim simulates a time series realization from a first-order quadratic
AR model where phi0 is the coefficient of the lag 1 and phi1 is that of the square of
lag 1. The default intercept is zero, otherwise it can be set by the const argument. The
innovation standard deviation is passed into the function via the sigma argument. Here,
sigma=1 sets the standard deviation to be 1. The argument n=15 sets the sample size
to 15. Finally, the argument init=.377 sets the initial value to be 0.377. The default
initial value is 0.

plot(x=1:100,y=y,type='l',ylab=expression(Y[t]),xlab='t')

The output of the qar.sim function is a vector. To draw the time sequence plot, both
the x-variable and the y-variable have to be specified.

Exhibit 15.8 on page 411.
set.seed(1234579)
y=tar.sim(n=100,Phi1=c(0,0.5),Phi2=c(0,-1.8),p=1,d=1,

sigma1=1,thd=-1,sigma2=2)$y

The function tar.sim simulates time series realizations from a two-regime TAR
model. The order of the model is specified by the p argument, so p=1 specifies a
first-order model. The delay is passed into the function by the d argument, so d = 1
specifies the delay to be 1. The AR coefficient vector for the lower (upper) regime, with
the intercept being the first component, is supplied via the Phi1 (Phi2) argument. The
thd=-1 argument imposes the threshold parameter of −1. The innovation standard
deviations for the lower and upper regimens are specified via the sigma1 and sigma2

Chapter 15 R Commands 465

arguments, respectively. The simulated TAR model in the example is conditionally het-
eroscedastic, as the innovation standard deviation for the upper regime is twice that for
the lower regime. The sample size is set to 100 by the n=100 argument.

The likelihood ratio test for threshold nonlinearity, assuming normally distributed
innovations, can be carried out by the tlrt function, with which the data enter into the
function as the first argument. Other required information includes the order and
delay arguments. Also, the threshold parameter must be searched over a finite interval
from the a times 100 percentile to the b times 100 percentile of the data. Often, data
have to be transformed before testing for nonlinearity, which can be specified by supply-
ing the transformed data or supplying the raw data with the transform argument set to
one of the available options: 'no' (means no transformation, the default), 'log',
'log10', or 'sqrt'. For example, the following command does the likelihood ratio test
of the null hypothesis that the square root transformation of relative sunspot data is an
AR(5) process versus the alternative that it follows a threshold model with delay 1,
order 5, and with the threshold parameter searched from the first to the third quartile of
the (transformed) data.

tlrt(sqrt(spots),p=5,d=1,a=0.25,b=0.75)

The tlrt function outputs a list containing the test statistic and its p-value. In practice,
the true delay of the threshold model is unknown, although it is likely to be between 1
and the order of the model. (The delay may be specified to some value greater than the
order if this is deemed appropriate.) The command above can be replicated a number of
times for each possible delay value. A more elegant way is to use a for loop as fol-
lows.

Tests for threshold nonlinearity, page 400.
pvaluem=NULL

This defines an empty object named pvaluem.

for (d in 1:5)
{res=tlrt(sqrt(spots),p=5,d=d,a=0.25,b=0.75); pvaluem=
cbind(pvaluem,c(d,res$test.statistic,res$p.value))}

The statements within the curly brackets are repeated for each value the variable d takes
sequentially from the vector 1:5, which contains the first five positive integers. Thus, d
is first set to 1, and the likelihood ratio test for threshold nonlinearity is carried out, with
its output stored in an object named res. The command c(d,res$test.statis-
tic,res$p.value) creates a vector containing the value 1, the likelihood ratio test
statistic, and its p-value. The vector so created is then augmented to the right-hand side
of pvaluem to form a matrix. So, after the first loop, pvaluem is a matrix consisting
of the test results for d=1. Then the loop sets d to the second value, namely 2; carries
out the threshold likelihood ratio test for d=2; augments the test results for d=2 to the
right-hand side of pvaluem; and so forth until the loop exhausts all possible values for
d and n and then R exits from the loop.

rownames(pvaluem)=c('d','test statistic','p-value')

This labels the rows of the pvaluem matrix, with the first row labeled as “d”, the sec-
ond “test statistic”, and the third row “p-value”.

466 Appendix: An Introduction to R

round(pvaluem,3)

This prints out the matrix (table) of test results, with the numbers rounded to three deci-
mal places. Note that the computational efficiency of the R code above can be improved
by declaring pvaluem as a matrix with appropriate dimension (for example, pval-
uem= matrix('NA',nrow=3,ncol=5)) in which the test results are saved.

Exhibit 15.12 on page 405.
predator.tar.1=tar(y=log(predator.eq),p1=4,p2=4,d=3,a=.1,

b=.9,print=T)

This fits a threshold model with the (log-transformed) predator.eq series with max-
imum AR order to be 4 for both lower and upper regimes, d=3, and the threshold
parameter searched from the tenth to the ninetieth percentiles. The fitted model is
printed out if the print argument is set to T. By default, the function uses the MAIC
(minimum AIC) method for estimation, with the AR orders estimated as well. Another
method of estimation is conditional least squares, which can be specified by the
method='CLS', as illustrated in the next command.

In the command below, we repeat the estimation but using the CLS method. Note
that the CLS method does not estimate the AR orders of the two regimes. Instead, the
AR orders are set as the maximum orders specified through the p1 and p2 arguments!
That is why the values of p1 and p2 are set differently from the previous command and
in fact set as the orders estimated from the model using the MAIC method.

tar(y=log(predator.eq),p1=1,p2=4,d=3,a=.1,b=.9,print=T,
method='CLS')

Exhibit 15.13 on page 408.
tar.skeleton(predator.tar.1)

This computes the skeleton of a TAR model supplied as the first argument, with a
default sample size of 500 values, a burn-in of 500 values, and plots the time sequence
plot of the last 50 values of the skeleton. The TAR model is usually the output of that of
the object argument of the tar function. Alternatively, the model parameters can be
specified in a format similar to the tar.sim function. The function also prints a sum-
mary statement on the long-run behavior of the skeleton.

Exhibit 15.14 on page 408.
set.seed(356813)
plot(y=tar.sim(n=57,object=predator.tar.1)$y,x=1:57,

ylab=expression(Y[t]),xlab=expression(t),type='o')

This plots a simulated time series from the fitted TAR(2;1,4) model to the predator
series. The fitted model is supplied via the object argument.

Exhibit 15.20 on page 414.
tsdiag(predator.tar.1,gof.lag=20)

This carries out several model diagnostics on the fitted TAR(2;1,4) model to the preda-
tor series. The function plots a time sequence plot of the standardized residuals, the
residual ACF, and the p-value plots of the generalized portmanteau tests. The argument
gof.lag=20 specifies that the last two plots use a maximum lag of 20.

Chapter 15 R Commands 467

Exhibit 15.21 on page 415.
qqnorm(predator.tar.1$std.res)

This plots the quantile-quantile normal score plot for the standardized residuals from the
TAR(2;1,4) model fitted to the predator series.

qqline(predator.tar.1$std.res)

adds the reference line on the Q-Q plot.

Exhibit 15.22 on page 417.
set.seed(2357125)
pred.predator=predict(predator.tar.1,n.ahead=60,

n.sim=1000)

This simulates a time series from the conditional distribution of the future values given
the data and a threshold model (usually the output of the tar function, here being
predator.tar.1), with a forecast horizon of a maximum sixty-step-ahead predic-
tions. The point predictors and their 95% prediction limits are computed by simulation.
The simulation size is specified as n.sim=1000. The output of the predict function
is a list that contains the prediction means as a vector in the component (element) named
fit and the lower and upper prediction limits as a matrix in the pred.interval
component. The function predict is a smart function and recognizes that the first
argument is a TAR model, on the basis of which it computes the prediction. To learn
more about the predict function for TAR models, run ?predict.TAR. The exten-
sion TAR signifies the particular predict function for processing prediction based on a
TAR model.

yy=ts(c(log(predator.eq),pred.predator$fit),frequency=2,
start=start(predator.eq))

This augments the point prediction values to the data.

plot(yy,type='n',
ylim=range(c(yy,pred.predator$pred.interval)),
ylab='Log Prey', xlab=expression(t))

This sets up a plot of the data and the predicted future values without actual plotting
(type='n'). We anticipate superimposing the prediction intervals, so the range of the
y-axis is specified through the ylim argument to the vector containing the minimum
and maximum of the combined vector of the observed + predicted values (yy) and the
prediction limits (pred.predator$pred.interval), computed via the range
function.

lines(log(predator.eq))

This draws the data as a solid line.

lines(window(yy, start=end(predator.eq)+c(0,1)),lty=2)

This adds the curve of the predicted values as a dashed line.

lines(ts(pred.predator$pred.interval[2,],
start=end(predator.eq)+c(0,1),freq=2),lty=2)

This adds the upper prediction limits.

468 Appendix: An Introduction to R

lines(ts(pred.predator$pred.interval[1,],
start=end(predator.eq)+c(0,1),freq=2),lty=2)

This adds the lower prediction limits.

Exhibit 15.24 on page 419.
qqnorm(pred.predator$pred.matrix[,3])

The output of the predict function is a list that contains another component, named
pred.matrix, which is a matrix containing all simulated future values, with the first
column consisting of the simulated one-step-ahead values, the second column those of
the two-steps-ahead values, and so forth.

qqnorm(pred.predator$pred.matrix[,3])

This extracts all 1000 simulated three-steps-ahead values, which are then passed into the
qqnorm function to make the Q-Q normal score plot for these data.

qqline(pred.predator$pred.matrix[,6])

This adds the reference straight line for checking the normality of the three-steps-ahead
conditional distribution.

Finally, here is a listing and brief description of all the new or enhanced functions
that are contained in the TSA package.

New or Enhanced Functions in the TSA Library
Function Description

acf Computes and plots the sample autocorrelation function start-
ing with lag 1.

arima This command has been amended to compute the AIC accord-
ing to our definition.

arima.boot Bootstraps time series according to a fitted ARMA(p,d,q)
model.

arimax Extends the arima function, allowing the incorporation of
transfer functions and innovative and additive outliers.

ARMAspec Computes and plots the theoretical spectrum of an ARMA
model.

armasubsets Finds “best subset” ARMA models.

BoxCox.ar Finds a power transformation so that the transformed time
series is approximately an AR process with normal error terms.

detectAO Detects additive outliers in time series.

detectIO Detects innovative outliers in time series.

eacf Computes and displays the extended autocorrelation function
of a time series.

garch.sim Simulates a GARCH process.

gBox Performs a goodness-of-fit test for fitted GARCH models.

harmonic Creates a matrix of the first m pairs of harmonic functions for
fitting a harmonic trend (cosine-sine trend, Fourier regression)
model with a time series response.

New or Enhanced Functions in the TSA Library 469

Keenan.test Carries out Keenan's test for nonlinearity against the null
hypothesis that the time series follows some AR process.

kurtosis Calculates the (excess) coefficient of kurtosis.

lagplot Computes and plots nonparametric regression functions of a
time series against its various lags.

periodogram Computes the periodogram of a time series.

LB.test Computes the Ljung-Box or Box-Pierce tests checking whether
or not the residuals from an ARIMA model appear to be white
noise.

McLeod.Li.test Perform the McLeod-Li test for conditional heteroscedascity
(ARCH).

plot.Arima Plots a time series and its predictions (forecasts) with 95% pre-
diction bounds based on a fitted ARIMA model.

predict.TAR Calculates predictions based on a fitted TAR model. The errors
are assumed to be normally distributed and the predictive distri-
butions are approximated by simulation.

prewhiten Bivariate time series are prewhitened according to an AR
model fitted to the x-component of the bivariate series. Alterna-
tively, if an ARIMA model is provided, it is used to prewhiten
both series. The CCF of the prewhitened bivariate series is then
computed and plotted.

qar.sim Simulates a first-order quadratic AR model with normally dis-
tributed white noise error terms.

rstandard.Arima Computes internally standardized residuals from a fitted
ARIMA model.

runs Tests the independence of a sequence of values by checking
whether there are too many or too few runs above (or below)
the median.

season Extracts season information from a time series and creates a
vector of the season information. For example, for monthly
data, the function outputs a vector containing the months of the
data.

skewness Calculates the skewness coefficient of a dataset.

spec Allows the user to invoke either the spec.pgram function or
the spec.ar function in the stats package. The seasonal
attribute of the data, if it exists, is surpressed for our preferred
way of presenting the output. Alters defaults to demean=T,
detrend=F, taper=0, and permits plotting of confidence
interval bands.

summary.armasub-
sets

Summary method for class armasubsets, that is useful for
ARMA subset selection.

tar Estimates a two-regime TAR model.

New or Enhanced Functions in the TSA Library (Continued)
Function Description

470 Appendix: An Introduction to R

tar.sim Simulates a two-regime TAR model.

tar.skeleton Obtains the skeleton of a TAR model by suppressing the noise
term in the TAR model.

tlrt Carries out the likelihood ratio test for threshold nonlinearity,
with the null hypothesis being a normal AR process and the
alternative hypothesis being a TAR model with homogeneous,
normally distributed errors.

Tsay.test Carries out Tsay’s test for quadratic nonlinearity in a time
series.

tsdiag.Arima Modifies the tsdiag function of the stats package sup-
pressing initial residuals and displaying Bonferroni bounds. It
also checks the condition for the validity of the chi-square
asymptotics for the portmanteau tests.

tsdiag.TAR Displays the time series plot and the sample ACF of the stan-
dardized residuals. Also, portmanteau tests for detecting auto-
correlations in the standardized residuals are computed and
displayed.

zlag Computes the lag of a vector, with missing elements replaced
by NA.

New or Enhanced Functions in the TSA Library (Continued)
Function Description

