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Learning Goals

¨ Discuss state space models in general
¨ Discuss Bayesian Framework
¨ Learn about local level, linear trend and basic 

structure models
¨ See how models we are familiar with fit under state 

space framework (linear regression, exponential 
smoothing)

¨ Implement state space model in R



What’s next?



What’s next?

¨ After you have done the simple 
model, you start thinking about 
ways to improve it 

¨ Other forecasting techniques 
can help make the model more 
accurate 

¨ Suppose the variable is highly dependent on other factors, such as 
weather, holidays, time of the day, etc. One could try fitting time 
series models that allow for inclusion of other predictors using 
methods such 
¤ ARMAX (still a linear regression but with exogenous predictors)

Blue is forecast 
Red is observed

𝑦! = 𝜷𝟏𝒙𝒕 + 𝜙$𝑦!%$ +⋯+ 𝜙&𝑦!%& + 𝑎! − 𝜃$𝑎!%$ −⋯− 𝜃'𝑎!%'



More general models

¨ State Space models
¤ Model not only the variable but also the coefficients
¤ Bayesian approach to state space models

n Ex: Dynamic Linear Models



State Space Models



State Space Models

¨ The State Space Model approach offers a very 
general and powerful framework to operate with 
time series data

¨ Models with time-varying parameters can be 
created

¨ Classical linear regression is embedded as special 
case

¨ ARIMA-model class is also a special case



State Space Models (cont’d)

¨ State Space models allow decomposition of a time 
series into relevant components – trend, cycle, 
seasonal

¨ And analyze each in real-time (filter), to infer best 
historical estimates (smoothing), and to forecast all 
components as well as the original series



State Space Models (cont’d)

¨ Main estimation algorithm, Kalman Filter, is set-up 
as recursive form

¨ Approach allows to include a priori knowledge 
through a suitable Bayesian formulation of the 
initial state vector



A little background: Bayesian Statistics

¨ Frequentist versus Bayesian statistic
¨ Different way of thinking
¨ Instead of asking: What is the likelihood of this data point 

given the model (frequentist), the Bayesian ask: What is 
the likelihood of the model given this data point?



Simple Example (Bayesian approach)

¨ Two frogs: Joe (𝑃(𝑓𝑒𝑒𝑡) = 0.6) and Herman 
(𝑃(𝑓𝑒𝑒𝑡) = 0.2)

¨ Pick one frog and “jump” it. It lands on its feet. 
What is the probability it is Joe?



Simple Example (Frequentist approach)

¨ Find which distribution you could use to model the 
problem



Bayesian Framework



Back to State Space Models



Time Series Decomposition

¨ Classical decomposition of a time series
𝑦! = 𝜇! + 𝛾! + 𝜀!,            𝑡 = 1,… , 𝑛
where
𝑦!: observation
𝜇!: slowly changing (trend) component 
𝛾!: seasonal component 
𝜀!: error term (random)

¨ Component can be determinist (ARIMA) or functions 
of time (stochastic)



Local Level (LL) Model

¨ Deterministic Example
𝑦+ = 𝜇 + 𝜀+ where 𝜀+ are 𝑖. 𝑖. 𝑑 and 𝜀+~𝑁(0, 𝜎,-) or

𝜀+~𝒩ℐ𝒟(0, 𝜎,-)
¨ Stochastic Example
𝑦+ = 𝜇+ + 𝜀+ 𝜀+~𝒩ℐ𝒟(0, 𝜎,-)
If 𝜇! is a function of time, we also need a model for 𝜇!
𝜇!"# = 𝜇! + 𝜂! 𝜂!~𝒩ℐ𝒟(0, 𝜎$%)
¤ What do we need to specify?
Parameters: 𝜇#~𝑁(𝑎, 𝑃) and 𝜎&%, 𝜎$%



Local Linear Trend (LLT) Model

¨ Stochastic Example
𝑦+ = 𝜇+ + 𝜀+ 𝜀+~𝒩ℐ𝒟(0, 𝜎,-)
𝜇!"# = 𝛽! + 𝜇! + 𝜂! 𝜂!~𝒩ℐ𝒟(0, 𝜎$%)
𝛽!"# = 𝛽! + 𝜉! 𝜉!~𝒩ℐ𝒟(0, 𝜎'

%)
¨ What do we need to specify?

Parameters: prior distributions 𝜇!, 𝛽! and 𝜎"#, 𝜎$#, 𝜎%
#

¨ Special cases:
¤ If 𝜎"# = 𝜎$

# = 0, the trend is a straight line with slope 𝛽% and 
intercept 𝜇%

¤ If 𝜎"# = 0 𝑎𝑛𝑑 𝜎$
# > 0, the trend is a smooth curve



Local Trend with Seasonality Model

¨ Also known as Basic Structural Model or BSM
𝑦! = 𝜇! + 𝛾! + 𝜀! 𝜀!~𝒩ℐ𝒟(0, 𝜎"#)
𝜇!$% = 𝛽! + 𝜇! + 𝜂! 𝜂!~𝒩ℐ𝒟(0, 𝜎&#)
𝛽!$% = 𝛽! + 𝜉! 𝜉!~𝒩ℐ𝒟(0, 𝜎'

#)
𝛾!$% = −∑()%*+%𝛾!$%+( + 𝜔! 𝜔!~𝒩ℐ𝒟(0, 𝜎,#)

¨ 𝑠 denote number of seasons
¨ What do we need to specify?

Parameters: prior distributions 𝜇$, 𝛽$, 𝛾$, … , 𝛾( and 𝜎)*, 𝜎+*, 𝜎,
*, 𝜎-*

¨ Special case
¤ If 𝜎-* = 0, the seasonal component is determinist, i.e., dummy 

coefficient's do not change over time



Exponential Smoothing under SS

¨ Model equations will be

𝑦+ = 𝑙+ 𝜀+~𝒩ℐ𝒟(0, 𝜎,-)

𝑙+ = 𝑙+>? + 𝛼𝜀+

Observation 
equation

State 
equation



Linear Regression State Space Model

𝑌! = 𝐹!’𝜃! + 𝑣!
𝑣!~𝒩ℐ𝒟(0, 𝜎.*)

𝜃!/$ = 𝐺!/$𝜃! + 𝑤!/$
𝑤!/$~𝒩ℐ𝒟(0, 𝜎0*)

¨ What do we need to specify?Observation 
equation

State 
equation

{𝐹!, 𝐺!, 𝜎-#, 𝜎.#}

¨ What about priors?
¤ Find initial parameters for 𝜃1 based on initial information 

𝜃//𝐷/~𝑁(𝑚/, 𝐶/)
¤ Ex. Use the initial observations and run linear regression to get prior 

for the mean and variance of coefficients

¤ Common approach is to make 𝐺!
constant and equal to identity 
matrix (random walk)



State Space Forecasting in R

¨ Exponential Smoothing in State Space Model 
¨ Similar to the function ses() but with time varying parameters

es(data, model = "ZZZ", persistence = NULL, phi = NULL, initial = c("optimal", 
"backcasting"), initialSeason = NULL, ic = c("AICc", "AIC", "BIC"), cfType = 
c("MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10, holdout 
= FALSE, cumulative = FALSE, intervals = c("none", "parametric", 
"semiparametric", "nonparametric"), level = 0.95, intermittent = c("none", 
"auto", "fixed", "interval", "probability", "sba", "logistic"), imodel = "MNN", 
bounds = c("usual", "admissible", "none"), silent = c("all", "graph", "legend", 
"output", "none"), xreg = NULL, xregDo = c("use", "select"), initialX = NULL, 
updateX = FALSE, persistenceX = NULL, transitionX = NULL, ...)

¨ model three-character string 
¤ The first letter denotes the error type ("A", "M" or "Z"); 
¤ the second letter denotes the trend type ("N","A","M" or "Z"); and 
¤ the third letter denotes the season type ("N","A","M" or "Z"). 
"N"=none, "A"=additive, "M"=multiplicative and "Z"=automatically 
selected

package “smooth”



State Space Forecasting in R

¨ General class
StructTS(x, type = c("level", "trend", "BSM"), init = NULL, 
fixed = NULL, optim.control = NULL)

¨ Structural time series models are (linear Gaussian) 
state-space models for (univariate) time series 
based on a decomposition of the series into the 
components
¤ type ="level” local level model  
¤ type =”trend” local linear trend model
¤ type =”BSM” basic structural model, i.e., local trend 

with seasonal component

package “stats”



StrucTS() explained

StrucTS( data, type=“BSM”, fixed=c(0.1,0.001,NA,NA) )

¨ Fixed argument refers to variances
¤ fixed=c(𝝈&𝟐 , 𝝈'𝟐, 𝝈,𝟐 , 𝝈,𝟐, )

𝑦$ = 𝜇$ + 𝛾$ + 𝜀$ 𝜀$~𝒩ℐ𝒟(0, 𝜎%&)
𝜇+M? = 𝛽+ + 𝜇+ + 𝜂+ 𝜂+~𝒩ℐ𝒟(0, 𝜎N-)
𝛽+M? = 𝛽+ + 𝜉+ 𝜉+~𝒩ℐ𝒟(0, 𝜎O

-)
𝛾+M? = −∑PQ?R>? 𝛾+M?>P + 𝜔+ 𝜔+~𝒩ℐ𝒟(0, 𝜎S-)
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