

TIME SERIES ANALYSIS FOR ENERGY DATA

M10 - State Space Models / Bayesian Framework

Prof. Luana Medeiros Marangon Lima, Ph.D.

Nicholas School of the Environment - Duke University

Learning Goals

- Discuss state space models in general
- Discuss Bayesian Framework
- Learn about local level, linear trend and basic structure models
- See how models we are familiar with fit under state space framework (linear regression, exponential smoothing)
- Implement state space model in R

What's next?

Forecasts from ARIMA(1,0,0)(0,1,1)[12] with drift

- After you have done the simple model, you start thinking about ways to improve it
- Other forecasting techniques can help make the model more accurate
- Suppose the variable is highly dependent on other factors, such as weather, holidays, time of the day, etc. One could try fitting time series models that allow for inclusion of other predictors using methods such
 - ARMAX (still a linear regression but with exogenous predictors)

$$y_{t} = \beta_{1}x_{t} + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + a_{t} - \theta_{1}a_{t-1} - \dots - \theta_{q}a_{t-q}$$

More general models

- State Space models
 - Model not only the variable but also the coefficients
 - Bayesian approach to state space models
 - Ex: Dynamic Linear Models

State Space Models

- The State Space Model approach offers a very general and powerful framework to operate with time series data
- Models with time-varying parameters can be created

- Classical linear regression is embedded as special case
- ARIMA-model class is also a special case

State Space Models (cont'd)

- State Space models allow decomposition of a time series into relevant components – trend, cycle, seasonal
- And analyze each in real-time (filter), to infer best historical estimates (smoothing), and to forecast all components as well as the original series

State Space Models (cont'd)

Main estimation algorithm, Kalman Filter, is set-up as recursive form

Approach allows to include a priori knowledge through a suitable Bayesian formulation of the initial state vector

A little background: Bayesian Statistics

- Frequentist versus Bayesian statistic
- Different way of thinking
- Instead of asking: What is the likelihood of this data point given the model (frequentist), the Bayesian ask: What is the likelihood of the model given this data point?

Simple Example (Bayesian approach)

- Two frogs: Joe (P(feet) = 0.6) and Herman (P(feet) = 0.2)
- Pick one frog and "jump" it. It lands on its feet. What is the probability it is Joe?

Simple Example (Frequentist approach)

Find which distribution you could use to model the problem

Bayesian Framework

Back to State Space Models

Time Series Decomposition

Classical decomposition of a time series

$$y_t = \mu_t + \gamma_t + \varepsilon_t$$
, $t = 1, ..., n$

where

 y_t : observation

 μ_t : slowly changing (trend) component

- γ_t : seasonal component
- ε_t : error term (random)

Component can be determinist (ARIMA) or functions of time (stochastic)

Local Level (LL) Model

Deterministic Example

 $y_t = \mu + \varepsilon_t$ where ε_t are *i.i.d* and $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ or $\varepsilon_t \sim \mathcal{NJD}(0, \sigma_{\varepsilon}^2)$

Stochastic Example

 $y_t = \mu_t + \varepsilon_t \qquad \varepsilon_t \sim \mathcal{NID}(0, \sigma_{\varepsilon}^2)$

If μ_t is a function of time, we also need a model for μ_t

 $\mu_{t+1} = \mu_t + \eta_t \qquad \eta_t \sim \mathcal{NID}(0, \sigma_\eta^2)$

What do we need to specify?

Parameters: $\mu_1 \sim N(a, P)$ and σ_{ε}^2 , σ_{η}^2

Local Linear Trend (LLT) Model

Stochastic Example

 $y_t = \mu_t + \varepsilon_t$ $\mu_{t+1} = \beta_t + \mu_t + \eta_t$ $\beta_{t+1} = \beta_t + \xi_t$

$$\begin{split} & \varepsilon_t \sim \mathcal{NJD}(0, \sigma_{\varepsilon}^2) \\ & \eta_t \sim \mathcal{NJD}(0, \sigma_{\eta}^2) \\ & \xi_t \sim \mathcal{NJD}(0, \sigma_{\xi}^2) \end{split}$$

What do we need to specify?

Parameters: prior distributions μ_1 , β_1 and σ_{ε}^2 , σ_{η}^2 , σ_{ξ}^2

- Special cases:
 - If $\sigma_{\eta}^2 = \sigma_{\xi}^2 = 0$, the trend is a straight line with slope β_1 and intercept μ_1

• If $\sigma_{\eta}^2 = 0$ and $\sigma_{\xi}^2 > 0$, the trend is a smooth curve

Local Trend with Seasonality Model

Also known as Basic Structural Model or BSM

 $y_t = \mu_t + \gamma_t + \varepsilon_t$ $\mu_{t+1} = \beta_t + \mu_t + \eta_t$ $\beta_{t+1} = \beta_t + \xi_t$ $\gamma_{t+1} = -\sum_{j=1}^{s-1} \gamma_{t+1-j} + \omega_t$ $\begin{aligned} \varepsilon_t \sim \mathcal{NJD}(0, \sigma_{\varepsilon}^2) \\ \eta_t \sim \mathcal{NJD}(0, \sigma_{\eta}^2) \\ \xi_t \sim \mathcal{NJD}(0, \sigma_{\xi}^2) \\ \omega_t \sim \mathcal{NJD}(0, \sigma_{\omega}^2) \end{aligned}$

S denote number of seasons

□ What do we need to specify?

Parameters: prior distributions $\mu_1, \beta_1, \gamma_1, \dots, \gamma_s$ and $\sigma_{\varepsilon}^2, \sigma_{\eta}^2, \sigma_{\xi}^2, \sigma_{\omega}^2$

Special case

If $\sigma_{\omega}^2 = 0$, the seasonal component is determinist, i.e., dummy coefficient's do not change over time

Exponential Smoothing under SS

Model equations will be

Observation equation $y_t = l_t$

 $\varepsilon_t \sim \mathcal{NJD}(0, \sigma_{\varepsilon}^2)$

State equation

 $l_t = l_{t-1} + \alpha \varepsilon_t$

Linear Regression State Space Model

Observation $Y_t = F_t' \theta_t + v_t$ equation $v_t \sim \mathcal{NID}(0, \sigma_n^2)$

State equation $\theta_{t+1} = G_{t+1}\theta_t + W_{t+1}$ $W_{t+1} \sim \mathcal{NID}(0, \sigma_w^2)$

- What do we need to specify? $\{F_t, G_t, \sigma_v^2, \sigma_w^2\}$
 - **Common approach is to make** G_t constant and equal to identity matrix (random walk)

- What about priors?
 - Find initial parameters for θ_0 based on initial information

$$\theta_0/D_0 \sim N(m_0, C_0)$$

Ex. Use the initial observations and run linear regression to get prior for the mean and variance of coefficients

State Space Forecasting in R

- Exponential Smoothing in State Space Model package "smooth"
- Similar to the function ses() but with time varying parameters

es(data, model = "ZZZ", persistence = NULL, phi = NULL, initial = c("optimal", "backcasting"), initialSeason = NULL, ic = c("AICc", "AIC", "BIC"), cfType = c("MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10, holdout = FALSE, cumulative = FALSE, intervals = c("none", "parametric", "semiparametric", "nonparametric"), level = 0.95, intermittent = c("none", "auto", "fixed", "interval", "probability", "sba", "logistic"), imodel = "MNN", bounds = c("usual", "admissible", "none"), silent = c("all", "graph", "legend", "output", "none"), xreg = NULL, xregDo = c("use", "select"), initialX = NULL, updateX = FALSE, persistenceX = NULL, transitionX = NULL, ...)

- model three-character string
 - The first letter denotes the error type ("A", "M" or "Z");
 - the second letter denotes the trend type ("N","A","M" or "Z"); and
 - □ the third letter denotes the season type ("N","A","M" or "Z").

"N"=none, "A"=additive, "M"=multiplicative and "Z"=automatically selected

State Space Forecasting in R

General class

package "stats"

StructTS(<mark>x, type = c("level", "trend", "BSM")</mark>, init = NULL, <mark>fixed = NULL</mark>, optim.control = NULL)

- Structural time series models are (linear Gaussian) state-space models for (univariate) time series based on a decomposition of the series into the components
 - □ type ="level" local level model
 - type ="trend" local linear trend model
 - type ="BSM" basic structural model, i.e., local trend with seasonal component

StrucTS() explained

StrucTS(data, type="BSM", fixed=c(0.1,0.001,NA,NA))

 $y_t = \mu_t + \gamma_t + \varepsilon_t$ $\mu_{t+1} = \beta_t + \mu_t + \eta_t$ $\beta_{t+1} = \beta_t + \xi_t$ $\gamma_{t+1} = -\sum_{j=1}^{s-1} \gamma_{t+1-j} + \omega_t$
$$\begin{split} \varepsilon_t \sim \mathcal{NJD}(0, \sigma_{\varepsilon}^2) \\ \eta_t \sim \mathcal{NJD}(0, \sigma_{\eta}^2) \\ \xi_t \sim \mathcal{NJD}(0, \sigma_{\xi}^2) \\ \omega_t \sim \mathcal{NJD}(0, \sigma_{\omega}^2) \end{split}$$

□ Fixed argument refers to variances □ fixed=c(σ_n^2 , σ_{ξ}^2 , σ_{ω}^2 , σ_{ε}^2 ,)

THANK YOU !

luana.marangon.lima@duke.edu

Nicholas School of the Environment - Duke University