

### TIME SERIES ANALYSIS FOR ENERGY DATA

## M8 - Model Diagnostics, Selection and Performance

Prof. Luana Medeiros Marangon Lima, Ph.D.

Nicholas School of the Environment - Duke University

### Learning Goals

- Forecast fit vs forecast error
- Model Selection
  - Residual Analysis
  - AIC, AICc and BIC
- Performance measures
  - MAD, MSE, MAPE

#### Forecast fit vs forecast error

#### Forecast fit

- Backward-looking assessment
- Residual Analysis: describes the difference between actual historical data and the fitted values generated by a statistical model
- How well the model represents historical data
- Help choose the model that will be further used to forecast unobserved values (Model Selection/Diagnostics)

#### Forecast error

- Forward-looking assessment
- Difference between actual and forecasted values

# Model Selection/Diagnostics

# **Model Selection**



"Unsolved" problem in statistics: there are no magic procedures to get you the "best model" (Kadane and Lazar)

- With a limited number of predictors, it is possible to search all possible models
- But when we have many predictors, it can be difficult to find a good model (many possibilities)
- □ How do we select models?
  - We need a criteria or benchmark to compare two models
  - We need a search strategy

### **Model Selection Criteria**

Some popular and well-known methods



Some criteria work well for some types of data, others for different data

# Model Selection Criteria (cont'd)

#### We will focus on the ones that R prints after fitting an ARIMA model

```
auto.arima(deseasonal_cnt, seasonal=FALSE)
1
 2
     Series: deseasonal cnt
 3
     ARIMA(1, 1, 1)
 4
 5
     Coefficients:
 6
 7
               ar1
                        ma1
 8
            0.5510
                   -0.2496
9
      s.e. 0.0751
                     0.0849
10
     sigma^2 estimated as 26180:
                                    log likelihood=-4708.91
11
12
     (AIC=9423.82) (AICc=9423.85)
                                    BIC=9437.57
```

And the residual analysis

# **Akaike Information Criterion (AIC)**

- Estimator of the quality of statistical models
- Select the model with lowest AIC
- Let k be the number of estimated parameters and L be the maximum value of the likelihood function

 $AIC = 2k - 2\ln(\hat{L})$ 

Penalty for increasing number of parameters Reward based on the likelihood

Trade-off between the goodness of fit and the simplicity of the model

 $\Box$  The AICc is used when sample size (n) is small

$$AICc = AIC + \frac{2k^2 + 2k}{n - k - 1}$$

# **Bayesian Information Criterion (BIC)**

- Closely Related to AIC
- Also an estimator of quality of model
- Select the model with lowest BIC
- □ Let k be the number of estimated parameters,  $\hat{L}$  be the maximum value of the likelihood function and n the number of observations (sample size)  $BIC = k * \ln(n) - 2\ln(\hat{L})$

Sample size should be much larger than number of parameters

#### **Recall Electricity Prices Example**

| Series: deseasonal_price<br>ARIMA(1,1,0)             |                                                     |
|------------------------------------------------------|-----------------------------------------------------|
| Coefficients:<br>ar1<br>-0.0311                      |                                                     |
| s.e. 0.0707                                          |                                                     |
|                                                      | Series: deseasonal_price                            |
| sigma^2 estimated as 0.007868: log likelihood=203.22 | ARIMA(2,1,2) with drift                             |
| AIC=-402.43 AICc=-402.37 BIC=-395.82                 |                                                     |
|                                                      | Coefficients:                                       |
|                                                      | ar1 ar2 ma1 ma2 drift                               |
|                                                      | 0.5275 -0.7416 -0.5714 0.9283 0.0184                |
|                                                      | s.e. 0.1039 0.0782 0.0680 0.0479 0.0066             |
| Series: deseasonal_price                             |                                                     |
| ARIMA(2,1,0)                                         | sigma^2 estimated as 0.007162: log likelihood=214.3 |
|                                                      | AIC=-416.59 AICc=-416.16 BIC=-396.74                |
| Coefficients:                                        |                                                     |
| ar1 ar2                                              |                                                     |
| -0.0288 0.0755                                       |                                                     |
| s.e. 0.0705 0.0710                                   |                                                     |
|                                                      |                                                     |
| sigma^2 estimated as 0.007863: log likelihood=203.78 |                                                     |
| AIC=-401.56 AICc=-401.44 BIC=-391.64                 |                                                     |

#### **Recall Electricity Prices Example**



# Monitoring the Forecast

Tracking forecast errors and analyzing them can provide useful insight into whether forecasts are performing satisfactorily

#### Sources of forecast errors

- The model may be inadequate
- Irregular variations may have occurred
- The forecasting technique has been incorrectly applied
- Random variation
- Residual analysis are useful for identifying the presence of non-random error in forecasts

### **Residuals Analysis**

Errors are plotted on a chart in the order that they occur



Forecasts are in control when:

- All errors within control limits
- No patterns are present (e.g. seasonality, cycles, non-centered data)

## **Examples of Nonrandomness**

# Point beyond a control limit Upper control limit

Examples of nonrandomness

Lower control limit

**FIGURE 3.12** 

#### Cycling



Bias (too many points on one side of the centerline)







# Constructing a Control Chart

- Compute the mean square error (MSE)
- □ The square root of the MSE is used in practice as an estimate of the standard deviation of the distribution of errors  $\longrightarrow s = \sqrt{MSE}$
- Errors are random, therefore, they will be distributed according to a normal distribution around a mean of zero
- For a normal distribution:
  - +/- 95.5 % of the values (errors in this case) can be expected to fall within limits of 0 ± 2S (i.e., 0 ± 2 standard deviations)
  - +/- 99.7 % of the values can be expected to fall within  $\pm 3s$  of zero
- Compute the limits as: UCL:  $0 + z\sqrt{MSE}$ LCL:  $0 - z\sqrt{MSE}$ Number of standard deviations

# Model Evaluation/Performance

#### **Model Performance**

- Keep in mind that these criteria are not measures of predictive power, they just represent how good the model fit the observed data
- It's possible to look at the predictions from the various models
- □ In this case we shift the question

Which models best explain the observed data? Which models give the best predictions of future observations?

# Model Performance (cc'ed)

- Model Performance measures the forecast accuracy
- Forecasters want to minimize forecast errors
  - It is nearly impossible to correctly forecast real-world variable values on a regular basis
  - So, it is important to provide an indication of the extent to which the forecast might deviate from the value of the variable that actually occurs
- Forecast accuracy should be an important forecasting technique selection criterion

Error = Actual – Forecast

#### **Observed value**

If errors fall beyond acceptable bounds, corrective action may be necessary

### **Common Performance Measures**

- Mean Error (ME)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE) or Standard Error (SE)
- Coefficient of Determination or R-Squared (R2)
- Mean Absolute Deviation (MAD) or Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MAPE)

#### **Forecast Accuracy Metrics**

#### Mean-absolute Deviation

$$MAD = \frac{\sum |Actual_{t} - Forecast_{t}|}{n}$$

#### Mean-squared Error

$$MSE = \frac{\sum (Actual_t - Forecast_t)^2}{n}$$

MSE weights errors according to their squared values

MAD weights all errors

evenly

#### Mean-absolute Percent Error

$$MAPE = \frac{\sum \frac{|Actual_{t} - Forecast_{t}|}{Actual_{t}} \times 100}{n}$$

MAPE weights errors according to relative error

### Forecast Error Calculation

| Period | Actual<br>(A) | Forecast<br>(F) | (A-F)<br>Error | Error | Error <sup>2</sup> | [ Error /Actual]x100 |
|--------|---------------|-----------------|----------------|-------|--------------------|----------------------|
| 1      | 107           | 110             | -3             | 3     | 9                  | 2.80%                |
| 2      | 125           | 121             | 4              | 4     | 16                 | 3.20%                |
| 3      | 115           | 112             | 3              | 3     | 9                  | 2.61%                |
| 4      | 118           | 120             | -2             | 2     | 4                  | 1.69%                |
| 5      | 108           | 109             | 1              | 1     | 1                  | 0.93%                |
|        |               |                 | Sum            | 13    | 39                 | 11.23%               |
|        |               |                 |                | n = 5 | n = 5              | n = 5                |
|        |               |                 |                | MAD   | MSE                | MAPE                 |
|        |               |                 |                | = 2.6 | = 7.8              | = 2.25%              |



# THANK YOU !

#### luana.marangon.lima@duke.edu

Nicholas School of the Environment - Duke University