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Learning Goals
S

1 Forecast fit vs forecast error

1 Model Selection
Residual Analysis

AIC, AlCc and BIC

1 Performance measures

MAD, MSE, MAPE



Forecast fit vs forecast error
—

Forecast fit
Backward-looking assessment

Residual Analysis: describes the difference between actual
historical data and the generated by a
statistical model

How well the model represents historical data

Help choose the model that will be further used to forecast
unobserved values (Model Selection/Diagnostics)

Forecast error
Forward-looking assessment
Difference between actual and



- Model Selection/Diagnostics



Model Selection

“‘Unsolved’ problem in statistics: there are
no magic procedures to get you the “best
model” (Kadane and Lazar)

With a limited number of predictors, it is possible to
search all possible models

But when we have many predictors, it can be difficult to
find a good model (many possibilities)

How do we select models?

We need a criteria or benchmark to compare two models

We need a search strategy



Model Selection Criteria
—

1 Some popular and well-known methods
AIC

and .
Mallows Bayes Bayesian

C Factors Model
p Ll
Averaging

Backward
Cross & Forward Model

Validation Procedure Averaging
Exhaustive

Search

1 Some criteria work well for some types of dataq,
others for different data



Model Selection Criteria (cont’d)
S

1 We will focus on the ones that R prints after fitting
an ARIMA model

1 auto.arima(deseasonal_cnt, seasonal=FALSE)
2

3 Series: deseasonal_cnt

4 ARIMA(1,1,1)

g

6 Coefficients:

7 arl mal

8 0.5510 -0.2496

9 s.e. 0.0751 0.0849

10

11 sigma’2 estimated as 26180: 1log likelihood=-4708.91

o And the residual analysis



Akaike Information Criterion (AlIC)
-1

0 Estimator of the quality of statistical models

1 Select the model with lowest AIC

o Let k be the number of estimated parameters and L be
the maximum value of the likelihood function

AIC = 2k — 2In(L)

Penalty for increasing Reward based on
number of parameters the likelihood

0 Trade-off between the goodness of fit and the simplicity
of the model

1 The AlCc is used when sample size (n) is small
2k* + 2k

AlCc = AIC +
¢ n—k—1




Bayesian Information Criterion (BIC)
4

o Closely Related to AIC

o Also an estimator of quality of model

0 Select the model with lowest BIC

7 Let k be the number of estimated parameters, L be
the maximum value of the likelihood function and n
the number of observations (sample size)

BIC =k *In(n) — Zln(Z)

1 Sample size should be much larger than number of
parameters



Recall Electricity Prices Example
B

Series: deseasonal_price
ARIMA(1,1,0)

Coefficients:
arl

-0.0311

s.e. 0.0707

. . . . Series: deseasonal_price
_sigmarZ2 estimated as 0.007868: log likelihood=203.22 ARIMA(2,1,2) with drift
AIC=-402.43 AICc=-402.37 BI(C=-395.82

Coefficients:
arl ar2 mal maZz drift
0.5275 -0.7416 -0.5714 0.9283 0.0134
s.e. 0.1039 0.0782 0.0680 0.0479 0.0066
Series: deseasonal_price
ARIMA(2,1,0) sigmarZ estimated as 0.007162: log likelihood=214.3
AIC=-416.59 AICc=-416.16 BI(=-396.74

Coefficients:
arl ar2
-0.0288 0.0755
s.e. 0.0705 0.0710

_siamar? estimated as 0. O07863: loa likelihood=203.78
AIC=-401.56 AICc=-401.44 BIC=-391.64




Recall Electricity Prices Example
B

Series: price
ARIMA(1,1,1)(1,1,0)([12]

Coefficients:
arl mal sarl
0.6735 -0.6051 -0.4545
s.e. 0.3308 0.3540 0.0640

_sigmarZ estimated as 0 OOB488: log likelihood=183.63
AIC=-359.25 AICc=-359.04 BIC=-346.26

Series: price
ARIMA(0,1,0)(0,1,1)([12]

Coefficients:
smal

-0.6371

s.e. 0.0615

_sigmar? estimated as 0. .0A76072: log likelihood=191.35
AIC=-378.71 AICc=-378.64 BI(=-372.21




- Residual Analysis



Monitoring the Forecast

01 Tracking forecast errors and analyzing them can
provide useful insight into whether forecasts are
performing satisfactorily

0 Sources of forecast errors
The model may be inadequate
Irregular variations may have occurred

The forecasting technique has been incorrectly
applied
Random variation

0 Residual analysis are useful for identifying the
presence of non-random error in forecasts



Residuals Analysis

o Errors are plotted on a chart in the order that they occur

Upper control limit
N Normal distribution of forecast errors
[ )
o - o Range of
Error OfF == =) == o | random
[ ] . -
_ Forecast error A variability Q q(‘
" _/"\
for period 8 =% -
Lower control limit \ -
| 1 | | | | | | | =
0 1 2 3 4 5 6 =
Period ime

1 Forecasts are in control when:

All errors within control limits

No patterns are present (e.g. seasonality, cycles, non-centered data)



Examples of Nonrandomness
-1

FIGURE 312 Examples of nonrandomness

Error above the
Point beyond a control limit upper control limit Trend

Upper control limit

Lower control limit

Cycling Bias (too many points on one side of the centerline)



Constructing a Control Chart

O

Compute the mean square error (MSE)

The square root of the MSE is used in practice as an estimate
of the standard deviation of the distribution of errors — s=VMSE

Errors are random, therefore, they will be distributed
according to a normal distribution around a mean of zero

For a normal distribution:

+ /- 95.5 % of the values (errors in this case) can be expected to fall
within limits of O = 2§ (i.e., 0 = 2 standard deviations)

+ /- 99.7 % of the values can be expected to fall within £3s of zero

Compute the limits as: , UCL: 0+ zVvMSE
LCL: 0 — zvVMSE

~

Number of standard

deviations






Model Performance

Keep in mind that these criteria are not measures of

predictive power, they just represent how good the
model fit the observed data

It’s possible to look at the predictions from the
various models

In this case we shift the question



Model Performance (cc’ed)
S

1 Model Performance measures the forecast accuracy

1 Forecasters want to minimize forecast errors

It is nearly impossible to correctly forecast real-world
variable values on a regular basis

So, it is important to provide an indication of the extent to
which the forecast might deviate from the value of the
variable that actually occurs
1 Forecast accuracy should be an important forecasting
technique selection criterion
Error = Actual — Forecast
~ Observed value

If errors fall beyond acceptable bounds, corrective action
may be necessary




Common Performance Measures
-0
Mean Error (ME)
Mean Squared Error (MSE)

Root Mean Squared Error (RMSE) or Standard
Error (SE)

Coefficient of Determination or R-Squared (R2)

Mean Absolute Deviation (MAD) or Mean
Absolute Error (MAE)

Mean Absolute Percentage Error (MAPE)



Forecast Accuracy Metrics
S

Mean-absolute Deviation

MAD weights all errors
evenly

Mean-squared Error
MSE weights errors according
to their squared values

Mean-absolute Percent Error

MAPE weights errors
according to relative error




Forecast Error Calculation

Actual Forecast (A-F)

Period

(A) (F) Error  |Error| Error? [IError|/Actual]x100
1 107 110 -3 3 9 2.80%
2 125 121 4 4 16 3.20%
3 115 112 3 3 9 2.61%
4 118 120 -2 2 4 1.69%
5 108 109 1 1 1 0.93%
Sum 13 39 11.23%
n=>5 n=35 n=35
MAD MSE MAPE
=26 =7.8 = 2.25%
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