

TIME SERIES ANALYSIS FOR ENERGY DATA

M8 - Model Diagnostics, Selection and Performance

Prof. Luana Medeiros Marangon Lima, Ph.D.

Nicholas School of the Environment - Duke University

Learning Goals

- □ Forecast fit vs forecast error
- □ Model Selection
	- **E** Residual Analysis
	- **E** AIC, AICc and BIC
- □ Performance measures
	- ¤ MAD, MSE, MAPE

Forecast fit vs forecast error

□ Forecast fit

- **□** Backward-looking assessment
- **□** Residual Analysis: describes the difference between actual historical data and the fitted values generated by a statistical model
- **□** How well the model represents historical data
- Help choose the model that will be further used to forecast unobserved values (Model Selection/Diagnostics)

\square Forecast error

- **□** Forward-looking assessment
- ¤ Difference between actual and forecasted values

Model Selection/Diagnostics

Model Selection

"Unsolved" problem in statistics: there are no magic procedures to get you the "best model" (Kadane and Lazar)

- \Box With a limited number of predictors, it is possible to search all possible models
- \Box But when we have many predictors, it can be difficult to find a good model (many possibilities)
- □ How do we select models?
	- **□ We need a criteria or benchmark to compare two models**
	- We need a search strategy

Model Selection Criteria

□ Some popular and well-known methods

 \square Some criteria work well for some types of data, others for different data

Model Selection Criteria (cont'd)

\Box We will focus on the ones that R prints after fitting an ARIMA model

```
auto.arima(deseasonal_cnt, seasonal=FALSE)
 1
 \overline{2}Series: deseasonal cnt
 3
      ARIMA(1.1.1)4
 5
      Coefficients:
 6
 \overline{7}ar1ma1
             0.5510 - 0.24968
 \overline{9}s.e. 0.07510.0849
10
      sigma^2 estimated as 26180:
11
                                       log likelihood=-4708.91
12
     AIC = 9423.82 AIC = 9423.85BIC=9437.57
```
 \Box And the residual analysis

Akaike Information Criterion (AIC)

- □ Estimator of the quality of statistical models
- Select the model with **lowest AIC**
- \Box Let k be the number of estimated parameters and \overline{L} be the maximum value of the likelihood function

 $AIC = 2k - 2\ln(L)$

Penalty for increasing number of parameters **Reward based on the likelihood**

¨ Trade-off between the **goodness of fit** and the **simplicity** of the model

 \Box The AICc is used when sample size (n) is small

$$
AICc = AIC + \frac{2k^2 + 2k}{n - k - 1}
$$

Bayesian Information Criterion (BIC)

- □ Closely Related to AIC
- □ Also an estimator of **quality of model**
- □ Select the model with **lowest BIC**
- \Box Let k be the number of estimated parameters, \widehat{L} be the maximum value of the likelihood function and n the number of observations (sample size) $BIC = k * ln(n) - 2ln(\hat{L})$

 \square Sample size should be much larger than number of parameters

Recall Electricity Prices Example

Recall Electricity Prices Example

Series: price ARIMA(1,1,1)(1,1,0)[12] Coefficients: ma1 sar1 ar1 $0.6735 - 0.6051 - 0.4545$ s.e. 0.3308 0.3540 0.0640 sigma^2 estimated as 0.008488: log likelihood=183.63 AIC=-359.25 AICc=-359.04 BIC=-346.26

> Series: price ARIMA(0,1,0)(0,1,1)[12] Coefficients: sma1 -0.6371 s.e. 0.0615 sigma^2 estimated as 0.007602: log likelihood=191.35 $AIC = -378.71$ $AICc=-378.64$ $BIC = -372.21$

Monitoring the Forecast

□ **Tracking forecast errors** and analyzing them can provide useful insight into whether forecasts are performing satisfactorily

□ Sources of forecast errors

- **□** The model may be inadequate
- **<u>u**</u> Irregular variations may have occurred
- **□** The forecasting technique has been incorrectly applied
- **E** Random variation
- □ Residual analysis are useful for identifying the **presence of non-random error in forecasts**

Residuals Analysis

 \Box Errors are plotted on a chart in the order that they occur

Forecasts are in control when:

- All errors within control limits
- No patterns are present (e.g. seasonality, cycles, non-centered data)

Examples of Nonrandomness

Error above the Point beyond a control limit upper control limit Upper control limit

Examples of nonrandomness

Lower control limit

FIGURE 3.12

Cycling

Bias (too many points on one side of the centerline)

Constructing a Control Chart

- Compute the mean square error (MSE)
- The **square root of the MSE** is used in practice as an estimate of the **standard deviation** of the distribution of errors $\longrightarrow s = \sqrt{MSE}$
- □ **Errors are random**, therefore, they will be distributed according to a **normal distribution** around a mean of zero
- \Box For a normal distribution:
	- \blacksquare +/- 95.5 % of the values (errors in this case) can be expected to fall within limits of 0 ± 25 (i.e., 0 ± 2 standard deviations)
	- ¤ +/- 99.7 % of the values can be expected to fall within ±3*s* of zero
- Compute the limits as: $\frac{1}{\text{UCL}: 0 + z\sqrt{\text{MSE}}}$ LCL: $0 - z\sqrt{MSE}$ Number of standard

deviations

Model Evaluation/Performance

Model Performance

- □ Keep in mind that these criteria are not measures of *predictive power, they just represent how good the model fit the observed data*
- \Box It's possible to look at the predictions from the various models
- \Box In this case we shift the question

Which models best explain the observed data?

Which models give the best predictions of future observations?

Model Performance (cc'ed)

- □ Model Performance measures the **forecast accuracy**
- □ Forecasters want to **minimize forecast errors**
	- ¤ It is nearly **impossible to correctly forecast real-world variable** values on a regular basis
	- ¤ So, it is important to **provide an indication of the extent to which the forecast might deviate** from the value of the variable that actually occurs
- □ **Forecast accuracy** should be an important forecasting technique selection criterion
	- \blacksquare Error $=$ Actual $-$ Forecast

Observed value

 \blacksquare If errors fall beyond acceptable bounds, corrective action may be necessary

Common Performance Measures

- \square Mean Error (ME)
- □ Mean Squared Error (MSE)
- **Root Mean Squared Error (RMSE) or** Standard Error (SE)
- □ Coefficient of Determination or R-Squared (R2)
- □ Mean Absolute Deviation (MAD) or Mean Absolute Error (MAE)
- ¨ **Mean Absolute Percentage Error (MAPE)**

Forecast Accuracy Metrics

Mean-absolute Deviation

$$
MAD = \frac{\sum |Actual_t - Forecast_t|}{n}
$$

Mean-squared Error

$$
MSE = \frac{\sum (Actual_t - Forecast_t)^2}{n}
$$

MSE weights errors according to their squared values

MAD weights all errors

evenly

Mean-absolute Percent Error

$$
MAPE = \frac{\sum \frac{|\text{Actual}_{t} - \text{forecast}_{t}|}{\text{Actual}_{t}} \times 100}{n}
$$

MAPE weights errors according to relative error

Forecast Error Calculation

THANK YOU !

luana.marangon.lima@duke.edu

Nicholas School of the Environment - Duke University