

TIME SERIES ANALYSIS FOR ENERGY DATA

M5 – ARIMA Models

Prof. Luana Medeiros Marangon Lima, Ph.D.

Nicholas School of the Environment - Duke University

Learning Goals

Discuss Models for Stationary Time Series

Autoregressive Model (AR)

Moving Average Model (MA)

ARMA Model

ARIMA Model

Learn how to implement those models in R

What do we know so far?

Introduction

- Basic concepts of parametric time series models the ARMA or ARIMA models
 - AR stands for Auto Regressive; and
 - MA stands for Moving Average
 - And the I stands for Integrated (more on that later)
- Traditional Box-Jenkins models
- To model a time series with the Box-Jenkins approach, the series has to be stationary
- Recall: series is stationary if tends to wonder more or less uniformly about some fixed level

Review: Achieving Stationarity

- □ Is the trend stochastic or deterministic?
 - Run the tests
 - If stochastic: use differencing
 - If determinist: use regression
- Check if variance changes with time
 - If yes: make it constant with log transformation

Auto Regressive Models

- The simplest family of these models are the autoregressive (AR)
- They generalize the idea of regression to represent the linear dependence between a dependent variable y_t and an explanatory variable y_{t-1} , such that: $y_t = c + dy_t + d_t$

$$y_t = c + \phi y_{t-1} + a_t$$

$$\beta_0 \qquad \qquad \beta_1$$

where c and ϕ are constants to be determined and a_t are i.i.d. $N(0, \sigma^2)$

First order autoregressive process

Auto Regressive Models

From the unit root test, the condition -1 < φ < 1 is necessary for the process to be stationary, but why?
 Suppose y_o = h where h is constant

$$y_1 = c + \phi h + a_1$$

$$y_2 = c + \phi y_1 + a_2 = c + \phi (c + \phi h + a_1) + a_2 = c(1 + \phi) + \phi^2 h + \phi a_1 + a_2$$

$$y_3 = c(1 + \phi + \phi^2) + \phi^3 h + \phi^2 a_1 + \phi a_2 + a_3$$

General
Form
$$y_{t} = c \sum_{i=0}^{t-1} \phi^{i} + \phi^{t}h + \sum_{i=0}^{t-1} \phi^{i} a_{t-i}$$

$$E[a_{t}] = 0 \qquad E[y_{t}] = c \sum_{i=0}^{t-1} \phi^{i} + \phi^{t}h$$

Auto Regressive Models

Hence the process is stationary if this function does not depend on t

$$E[y_t] = c \sum_{i=0}^{t-1} \phi^i + \phi^t h$$

The first term is a
geometric progression with
ratio ϕ , thus
$$\sum_{i=0}^{t-1} \phi^i \approx \frac{1-\phi^{t-1}}{1-\phi} \approx \frac{1}{1-\phi} if |\phi| < 1$$

Second term needs to
converge to zero, this is
only true if
 $|\phi| < 1$

Review: Geometric Progression

□ Sequence of numbers where each term is found by multiplying the previous one by a fixed ratio Ex.: $a, ar, ar^2, ar^3, ar^4, ar^5, \dots$ where $r \neq 0$

The sum of the first n element of a geometric progression is given by

$$\sum_{k=1}^{n} ar^{k-1} = a \sum_{k=1}^{n} r^{k-1} = a \frac{(1-r^n)}{1-r}$$

Auto Regressive Models (cont'd)

- This linear dependence can be generalized so that the present value of the series, y_t, depends not only on y_{t-1}, but also on the previous p lags, y_{t-2}..., y_{t-p}
- □ Thus, AR process of order p is obtained $y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + a_t$

ACF and PACF for AR Process

For AR models ACF will decay exponentially with time The PACF will identify
 the order of the AR
 model

Moving Average Models

- The AR process have infinite non-zero autocorrelation coefficients that decay with the lag
- Therefore, we say AR processes have a relatively "long memory"
- There is another family of model, that have a "short memory", the moving average or MA process
- The MA processes are a function of a finite and generally small number of its past residuals

Moving Average Models

A first order moving average process MA(1), is defined by

$$y_t = \mu + a_t - \theta a_{t-1}$$

where μ is the process mean and a_t are i.i.d. $N(0, \sigma^2)$ \Box Or $\widetilde{y}_t = a_t - \theta a_{t-1}$ where $\widetilde{y}_t = y_t - \mu$

 \square Note: This process will always be stationary for any value of θ

MA(q) Process Basic Concepts

A q-order moving average process, denoted MA(q) takes the form

$$y_t = \mu + a_t - \theta_1 a_{t-1} - \dots + \theta_q a_{t-q}$$

 Assume that error terms are i.i.d (independent and identically distributed)

ACF and PACF for MA Process

For MA models ACF will identify the order of the MA model

The PACF will decay exponentially

AR vs MA - Comparing Series Plots

AR vs MA - Comparing Series Plots

AR vs MA - Comparing ACF Plots

AR vs MA - Comparing PACF Plots

In summary...

- Series current values depend on its own previous values
- AR(p) current value depend on its own p-previous values
- p is order of the AR process

MA Process

- The current deviation from mean depends on previous deviations
- MA(q) current deviation depends on q-previous deviations
- **q** is the order of the MA process
- But we can also have ARMA Process
 - Takes into account both of the above factors when making predictions

ARMA Process

The simplest process, the ARMA(1,1) is written as

$$\widetilde{y}_t = \phi_1 \widetilde{y}_{t-1} + a_t - \theta_1 a_{t-1}$$

where $|\phi_1| < 1$ for the process to be stationary

- The ACF and PACF of the ARMA processes are the result of superimposing the AR and MA properties
 - In the ACF initial coefficients depend on the MA order and later a decay dictated by the AR part
 - In the PACF initial values dependent on the AR followed by the decay due to the MA part

ARMA Model Plots

Series arma.sim

10

Lag

5

20

15

-0.2

ARIMA Models

- Auto-Regressive Integrated Moving Average
- We know the AR and MA part already
- The Integrated part refers to a series that needs to be differenced to achieve stationarity
- The non-seasonal ARIMA model is described by three numbers

ARIMA(p, d, q)

p: number of autoregressive terms
d: number of differences (non-seasonal)
q: number of moving average terms

ARIMA Models

Equation

 $\square \hat{y}_t$ is an estimate for the differenced version of the series therefore

$$If d = 0: \quad \hat{Y}_t = \hat{y}_t$$
$$If d = 1: \quad \hat{Y}_t = \hat{y}_t + Y_{t-1}$$
$$\vdots$$

Drawbacks

There is no systematic approach for identification and selection

The identification is mainly trial-and-error

ARIMA class models in R

Fit ARIMA Models in R

arima() from package "stats"

```
arima(x, order = c(0L, 0L, 0L),
    seasonal = list(order = c(0L, 0L, 0L), period = NA),
    xreg = NULL, include.mean = TRUE,
    transform.pars = TRUE,
    fixed = NULL, init = NULL,
    method = c("CSS-ML", "ML", "CSS"), n.cond,
    SSinit = c("Gardner1980", "Rossignol2011"),
    optim.method = "BFGS",
    optim.control = list(), kappa = 1e6)
```

Arguments

	x	a univariate time series
	order	A specification of the non-seasonal part of the ARIMA model: the three integer components (p, d, q) are the AR order, the degree of differencing, and the MA order.
Aost relevant _ arguments	seasonal	A specification of the seasonal part of the ARIMA model, plus the period (which defaults to frequency(x)). This should be a list with components order and period, but a specification of just a numeric vector of length 3 will be turned into a suitable list with the specification as the order.
	xreg	Optionally, a vector or matrix of external regressors, which must have the same number of rows as \mathbf{x} .
	include.mean	Should the ARMA model include a mean/intercept term? The default is TRUE for undifferenced series, and it is ignored for ARIMA models with differencing.

Simulate ARIMA Models in R

arima.sim() from package "stats"

Arguments

model	A list with component ar and/or ma giving the AR and MA coefficients respectively. Optionally a component order can be used. An empty list gives an ARIMA(0, 0, 0) model, that is white noise.	
n	length of output series, before un-differencing. A strictly positive integer.	
rand.gen	optional: a function to generate the innovations.	
innov	an optional times series of innovations. If not provided, rand.gen is used.	
n.start	length of 'burn-in' period. If NA, the default, a reasonable value is computed.	

THANK YOU !

luana.marangon.lima@duke.edu

Master of Environmental Management Program Nicholas School of the Environment - Duke University