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Learning Goals
S

71 Discuss Models for Stationary Time Series

Autoregressive Model (AR)

Moving Average Model (MA)
ARMA Model

ARIMA Model

11 Learn how to implement those models in R



"« Initial Plots )

* Trend

* Seasonality

* Stationarity Test
* Quitliers

* Missing Data

\ Filtering and
Preparation

Estimation

* Auto Correlation Function

* Partial Autocorrelation
Function

* Model Parameter
estimation

- J

What do we know so far?

(o Forecast )

* Model accuracy
* Model Selection

R orecasting




Introduction

Basic concepts of parametric time series models the

ARMA or ARIMA models

AR stands for Auto Regressive; and

MA stands for Moving Average

And the | stands for Integrated (more on that later)
Traditional Box-Jenkins models

To model a time series with the Box-Jenkins
approach, the series has to be stationary

Recall: series is stationary if tends to wonder more
or less uniformly about some fixed level



Review: Achieving Stationarity
-1

01 Is the trend stochastic or deterministic?
Run the tests
If stochastic: use differencing
If determinist: use regression

1 Check if variance changes with time

If yes: make it constant with log transformation



- AR models



Auto Regressive Models
-

The simplest family of these models are the
autoregressive (AR)

They generalize the idea of regression to represent the
linear dependence between a dependent variable
V¢ and an explanatory variable y;_4, such that:

Ve =C+ Pye—1 +a;

where ¢ and ¢ are constants to be determined and a;

are i.i.d. N(0,0%)



Auto Regressive Models

-1 From the unit root test, the condition —1 < ¢ < 1is
necessary for the process to be stationary, but why?

o Suppose Y, = h where h is constant

yi=c+ dh+a,

y,=c+¢y;+a, = c+plc+ph+a)) +a,=c(l+ @)+ d*h + pa; + a,
v3=c(1+¢+¢%) +¢d3h+¢* a;+ dpa, +az

General t-1

o ye=c ¢l+¢th+2¢‘atl

=0

t—1
Ela] =0 »Eyt—cz ¢t + ¢pth
i=0



Auto Regressive Models
S

1 Hence the process is stationary if this function does

not depend on t

t-1
Ely:] =c :O¢l + ¢‘h

/N

The first term is a Second term needs to
geometric progression with converge to zero, this is
ratio ¢, thus only true if

1 ,i 1-¢t1 1 . <]
i—o @' ~ o~ g el 1




Review: Geometric Progression

Sequence of numbers where each term is found by

multiplying the previous one by a fixed ratio

3 5

Ex.: a,ar,ar?, ar3, ar*, ar>,... wherer # 0

The sum of the first n element of a geometric
progression is given by

n n (1™
z ar®—1 = aE rk=1 =g¢
k=1 k=1 1 — T




Auto Regressive Models (cont’d)
B

o This linear dependence can be generalized so that
the present value of the series, y;, depends not only
on y:_1, but also on the previous p lags,

YVt—2 = Vt—p
71 Thus, AR process of order p is obtained
Vi =C+ D1V + o+ PpYep + a;



ACF and PACF for AR Process

o For AR models ACF will & The PACF will identify
decay exponentially the order of the AR

with time model




- MA models



Moving Average Models
S

The AR process have infinite non-zero autocorrelation
coefficients that decay with the lag

Therefore, we say AR processes have a relatively

There is another family of model, that have a
, the moving average or MA process

The MA processes are a function of a finite and
generally small number of its past residuals



Moving Average Models
-1

o A first order moving average process MA(1), is
defined by
Ve =u+a—0a_4
where U is the process mean and a; are i.i.d. N(0,0?)
o Or

"~~~

Ve =a;—0a;_; where Y=y, —U

1 Note: This process will always be stationary for any
value of 6



MA(q) Process Basic Concepts
-1

1 A g-order moving average process, denoted MA(q)

takes the form

yve=u+a;—60a;,_1 —+04a,_4

1 Assume that error terms are i.i.d (independent and

identically distributed)

a,~N(0,o0

=

mean u

standard
deviation

cov (ai,aj) =0 ifi#]j

cov (a;,a;) =02 ifi=j



ACF and PACF for MA Process

1 For MA models ACF - The PACF will decay
will identify the order exponentially
of the MA model

q:



AR vs MA - Comparing Series Plots
—




AR vs MA - Comparing Series Plots
—
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AR vs MA - Comparing PACF Plots

Slow decay

Cuts off at
lag 1




In summary...

S
O AR Process
Series current values depend on its own previous values

AR(p) — current value depend on its own p-previous values

p is order of the AR process
0 MA Process

The current deviation from mean depends on previous
deviations

MA(q) — current deviation depends on g-previous deviations
q is the order of the MA process
-1 But we can also have ARMA Process

Takes into account both of the above factors when making
predictions



- ARMA models



ARMA Process

e
The simplest process, the ARMA(1,1) is written as

Ve = 1Y +ay — 01044

where || < 1 for the process to be stationary

The ACF and PACF of the ARMA processes are the
result of superimposing the AR and MA properties

In the ACF initial coefficients depend on the MA order
and later a decay dictated by the AR part

In the PACF initial values dependent on the AR
followed by the decay due to the MA part



ARMA Model Plots
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- ARIMA models



ARIMA Models
e

uto-Regressive Integrated Moving Average
We know the AR and MA part already

The Integrated part refers to a series that needs to
be differenced to achieve stationarity

The non-seasonal ARIMA model is described by
three numbers

p: number of autoregressive terms
d: number of dif ferences (non-seasonal)
q: number of moving average terms



ARIMA Models

11 Equation
Ve = U+ I1Ye—1+ o+ PpYep T a . Orag—1 — - — ant—ql
! v
/ AR terms / MA terms
B .
constant convention (%) Error convention (-)

ferm

71 Y; is an estimate for the differenced version of the
series therefore
Ifd=0: Y, =9,
Ifd=1: Y, =9,+Y_4



Drawbacks
S

o There is no systematic approach for identification
and selection

o The identification is mainly trial-and-error

Step 1: Identification

More on steps 3 and 4 later
Step 2: Estimation on the course

Step 3: Diagnostic Checking

Is the model Yes i i r
adequate? ep 4: Forecasting




- ARIMA class models in R



Fit ARIMA Models in R

4
o arima() from package “stats”

arima(x, order c(0L, OL, OL),
seasonal list(order = c(0OL, OL, OL), period = NA),
Xxreg = NULL, include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"), n.cond,
SSinit = c("Gardnerl980", "Rossignol2011"),
optim.method = "BFGS",
optim.control = list(), kappa = leé6)

non

Arguments

X a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three integer components (p, d, q) are the AR
order, the degree of differencing, and the MA order.

MO st releva nt seasonal A specification of the seasonal part of the ARIMA model, plus the period (which defaults to £requency(x)).
- . . N - Y . . .
This should be a list with components order and period, but a specification of just a numeric vector of length 3
argume nts will be turned into a suitable list with the specification as the order.
xreg Optionally, a vector or matrix of external regressors, which must have the same number of rows as x.
include.mean Should the ARMA model include a mean/intercept term? The default is TRUE for undifferenced series, and it is
- ignored for ARIMA models with differencing.



Simulate ARIMA Models in R

o arima.sim() from package “stats”

arima.sim(model, n, rand.gen = rnorm, innov = rand.gen(n, ...),
n.start = NA, start.innov = rand.gen(n.start, ...),

eel)

Arguments

model A list with component ar and/or ma giving the AR and MA coefficients respectively. Optionally a component order
can be used. An empty list gives an ARIMA(O, 0, 0) model, that is white noise.

n length of output series, before un-differencing. A strictly positive integer.

rand.gen optional: a function to generate the innovations.

innov an optional times series of innovations. If not provided, rand. gen is used.

n.start length of ‘burn-in’ period. If NA, the default, a reasonable value is computed.
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