

TIME SERIES ANALYSIS FOR ENERGY DATA

M3 - Trend and Seasonality | Stationarity **Tests**

Prof. Luana Medeiros Marangon Lima, Ph.D.

Nicholas School of the Environment - Duke University

Learning Goals

- □ Trend Component
	- ¤ Linear and Non-linear
	- **□** How to Estimate Linear Trend
	- **□** How to Model/Remove Linear Trend from a Series
- □ Seasonal Trend
	- **□** How to Estimate Seasonal Trend
	- **□** How to Model/Remove Seasonal Trend from a Series
- \square Stationarity Tests

Time Series Components

 \Box A time series may have the following components:

Causes of Variation in TS data

□ Calendar: seasons, holidays, weekends

Interest

- Trend of usage over time
- Popularity of games
- Weekly cycle of usage

Knowledge

- Usage up on the weekend and down during the week
- Increased usage during holidays
- Summer time: weekdays/weekends blend together

Example The Complete over time – daily basis

Causes of Variation in TS data

- □ Natural calamities: earthquake, epidemic, flood, drought
- \square Political movements or changes, policies, war
- □ Example

Source: https://fred.stlouisfed.org/series/GASREGW#

Trend Component

□ Long-term tendency

 \blacksquare Increase (upward movement) or

- **¤ Decrease (downward movement)**
- \square Trend can be linear or non-linear

Non-linear Trend

Polynomial trend

□ Example: quadratic trend $Y_i = \beta_0 + \beta_1 T_i + \beta_2 T_i^2 + \varepsilon_i$

□ Or any other order

Exponential trend $Y_i = (e^{\beta_0 + \beta_1 T_i}) \varepsilon_i$

Can be transformed into linear trend

$$
\ln Y_i = \beta_0 + \beta_1 T_i + \ln \varepsilon_i
$$

Most of the time we assume a linear trend to simplify the analysis

Linear Trend Component

 \square For a linear trend we can write

$$
Y_i = \beta_0 + \beta_1 t_i + \varepsilon_i
$$

 \Box **Slope** (β_1) and the **intercept** (β_0) are the unknown parameters, and ε_i is the **error term**

Linear Trend Estimation

- \Box How do we estimate β_0 and β_1 ?
- □ One approach: Least Squares Method
	- \blacksquare We want to minimize

$$
Q(\beta_0, \beta_1) = \sum_{t=1}^T [Y_t - (\beta_0 + \beta_1 t)]^2
$$

- **□** How de we minimize this function?
	- **n** By taking the partial derivatives of $Q(\beta_0, \beta_1)$ with respect to the coefficients β_0 e β_1
	- **n** QR decomposition

We will use R to solve it!

Estimating Linear Trend in R

- \Box The function for simple linear regression in R is the *lm()* from package "stats", where *lm* stands for "linear model"
- \Box The arguments you will need to provide are

Note: vectors *Y* and *t* should be in data frame format

Linear Trend Estimation and Removal

1. Model the trend: find β_0 and β_1

2. For each observation t remove trend

$$
Y_{detrend_t} = Y_t - (\beta_0 + \beta_1 t)
$$

Moving Average for Non-Linaer Trend Estimation

- \square Smooth out the trend with something like a rolling average
	- A moving average trendline smooth out fluctuations in data to show a pattern or trend more clearly
	- Which order to use for the moving average?
- \square Looking at the rolling average makes it easier to tell how the trend is moving underneath the noise

Amazon River Inflow in m^3/s

Trend visualization

Trend visualization

Residual standard error: 12400 on 966 degrees of freedom Multiple R-squared: 0.0005328, Adjusted R-squared: -0.0005018 F-statistic: 0.515 on 1 and 966 DF, p-value: 0.4732

Linear vs Smoothed Trend

Do you still see any patterns?

Seasonal Component

□ Short-term regular wave-like patterns

■ Observed within 1 year - monthly or quarterly

¤ Equally spaced peaks and troughs Calendar

Related

Peaks in the Summer months Jun/Jul/Ago

Seasonal Component Estimation

- **1. Smoothing the trend** with a moving average
- **2. De-trend the series**
	- \blacksquare Additive Model
		- take original series and **subtract** the smoothed trend

$$
Y_{seasonal} = Y - Y_{trend}
$$

- **E** Multiplicative model
	- scales the size of the seasonal component as the trend rises or falls
	- **n** take original series and **divide** the original data by the trend

$$
Y_{seasonal} = \frac{Y}{Y_{trend}}
$$

Additive vs Multiplicative Model

- □ In the **additive model** the magnitude of seasonality does not change in relation to time
- □ In the **multiplicative model** the magnitude of the seasonal pattern depends on the magnitude/level of the data.

Seasonal Trend Estimation (cont'd)

3. Assume the observed detrended series can be represented as

 $Y_{seasonal_t} = \mu_t + X_t$ where $E[X_t] = 0$

■ For monthly seasonal data assume 12 parameters such as

Seasonal

Means Model

$$
\mu_t = \begin{cases}\n\beta_1 & \text{for } t = 1, 13, 25, \cdots \\
\beta_2 & \text{for } t = 2, 14, 26, \cdots \\
\vdots & \vdots \\
\beta_{12} & \text{for } t = 12, 24, 36, \cdots\n\end{cases}
$$

Seasonal Trend Estimation (cont'd)

4. Estimate the parameters β_1 , β_2 , ... β_{12}

Create dummies (categorical variables with 2 levels)

$$
D_{s,t} = \begin{cases} 1 & \text{if } t \text{ belongs to season } s \\ 0 & \text{o.w.} \end{cases} \quad \text{for } s = 1, 2, \dots 12
$$

At any time period t, one of the seasonal dummies $D_{1,t}$, $D_{2,t}$,..., $D_{12,t}$ will equal 1, all the others will equal 0

 $Y_{seasonal_{t}}=\beta_1D_{1,t}+\beta_2D_{2,t}+\beta_3D_{3,t}+\beta_4D_{4,t}+\beta_5D_{5,t}+\beta_6D_{6,t}+\beta_7D_{7,t}+\beta_8D_{8,t}+\beta_9D_{9,t}+\beta_{10}D_{10,t}+\beta_1D_{11,t}+\beta_{12}D_{12,t}$

Seasonal Trend Estimation (cont'd)

5. Write series $Y_{seasonal}$ as a function of the dummies

$$
Y_{seasonal_t} = \sum_{s=1}^{12} \beta_s D_{s,t}
$$

6. Compute coefficients by linear regression

Estimating Seasonal Trend in R

- ¨ First create seasonal dummies using *seasonaldummy()* from package "forecast" $dummies = seasonal dummy(Y)$
- \Box This will only work if Y is a time series object and if you specify frequency

$$
Y = ts(Y, frequency = 12)
$$

 \Box Then just run a simple regression on the dummies $lm(Y \sim dummies, data)$

Back to example: Inflow

Detrended Series with Additive Model

$$
Y_{detrend_t} = Y_t - Trend_t
$$

Seasonal Component Visualization

Seasonal + Trend Decomposition

Stochastic versus deterministic trend

Series with Deterministic Trend

□ Deterministic linear trend process

$$
Y_i = \beta_0 + \beta_1 t_i + \varepsilon_i
$$

□ Or more generally, for a polynomial trend

$$
Y_i = \beta_0 + \beta_1 T_i + \beta_2 T_i^2 + \dots + \beta_n T_i^n + \varepsilon_i
$$

- \Box Detrending is accomplished by running a regression and obtaining the series of residuals. The residuals will give you the detrended series
- ¨ That's what we call **trend-stationarity**

Series with Stochastic Trend

- □ But some series have what we call **difference stationarity**
- □ Although trend-stationary and difference-stationary series are both "trending" over time, the stationarity is achieved by a distinct procedure
- \Box In the case of difference-stationarity, stationarity is achieved by differencing the series
- \square Sometimes we need to difference the series more than once

Trend-stationarity vs difference-stationarity

Stationarity Assessment

- ¨ **Mann-Kendall Test– monotonic trend**
- ¨ **Spearman's Rank Correlation Test – monotonic trend**

¨ **Dickey-Fuller (ADF) Test – unit root**

- \Box Phillips-Perron (PP) Test unit root
- \Box Kitawoski-Phillips-Schmidt-Shin (KPSS) unit root

 \square And others...

Review: Hypothesis Testing

- \Box Why do we use hypothesis testing?
	- **□** To analyze evidence provided by data
	- \blacksquare To make decisions based on data
- \square What is a statistical hypothesis?
	- An assumption about a population parameter that may or may not be true
- \Box In Hypothesis Testing we usually have

 $\left\{ \right.$ H_0 : the null hypothesis H_1 : the alternative hypothesis

Review: Hypothesis Testing (cont'd)

□ Procedure

- 1. State the hypotheses and identify the claim
- 2. Find the critical value(s) from the appropriate table
- 3. Compute the test value
- 4. Make the decision to reject or not reject the null hypothesis

If *P*-value $\leq \alpha$, reject the null hypothesis. If *P*-value $>\alpha$, **do not reject** the null hypothesis.

Mann-Kendall Test

 \Box Commonly employed to detect deterministic trends in series of environmental data, climate data or hydrological data

- **□ Cannot be applied to seasonal data**
- \Box Hypothesis Test

 $\left\{ \right\}$ $H_0: Y_t$ is i.i.d. (stationary) $H_1: Y_t$ follow a trend

Mann-Kendall Test

□ Mann-Kendall statistic is

$$
S = \sum_{k=1}^{N-1} \sum_{j=k+1}^{N} sgn(Y_j - Y_k)
$$

where

$$
sgn(Y_j - Y_k) = \begin{cases} 1 & \text{if} \quad Y_j - Y_k > 0 \\ 0 & \text{if} \quad Y_j - Y_k = 0 \\ -1 & \text{if} \quad Y_j - Y_k < 0 \end{cases}
$$

- \Box The test will check the magnitude of S and its significance based on the number of observations
- \Box In other words, the bigger the number of observations the higher S will need to be

Mann-Kendall Test

 $\{$ $H_0: Y_t$ is i.i.d. (stationary) $H_1: Y_t$ follow a trend

Mann-Kendall test statistic is

$$
S = \sum_{k=1}^{N-1} \sum_{j=k+1}^{N} sgn(Y_j - Y_k) \rightarrow sgn(Y_j - Y_k) = \begin{cases} 1 & \text{if } Y_j - Y_k > 0 \\ 0 & \text{if } Y_j - Y_k = 0 \\ -1 & \text{if } Y_j - Y_k < 0 \end{cases}
$$

$$
E[S] = 0
$$

Var[S] = $\sigma_S^2 = \frac{1}{18}n(n-1)(2n+5)$ $\tau = \frac{2S}{N(N-1)}$

Under H_0 , Z follow a standard normal distribution

$$
Z = \begin{cases} \frac{(S-1)}{\sigma_s} & \text{if } s > 0\\ 0 & \text{if } s = 0\\ \frac{(S+1)}{\sigma_s} & \text{if } s < 0 \end{cases}
$$
 Reject H_0 when $Z < Z_{\alpha/2}$

Mann-Kendall test in R

The Mann-Kendall test in R is done with the command MannKendall() from package "Kendall"

```
Description
```
This is a test for monotonic trend in a time series z[t] based on the Kendall rank correlation of z[t] and t.

Usage

```
MannKendall(x)
```
Arguments

```
a vector of data, often a time series
x
```
Details

The test was suggested by Mann (1945) and has been extensively used with environmental time series (Hipel and McLeod, 2005). For autocorrelated time series, the block bootstrap may be used to obtain an improved signficance test.

□ For seasonal data you can use SeasonalMannKendall() from the same package

Spearman's Rank Correlation Coefficient

 \square Spearman's correlation coefficient is a statistical measure of the strength of a monotonic relationship

Spearman's Rank Correlation Coefficient

 \Box To verify a monotonic trend in your data, compute the spearman correlation between your data and series T

 Y_2 2 Y_3 3 \ddot{a} \ddot{a} \ddot{a} \ddot{a} \ddot{a} \ddot{a} Y_{N-2} $N-2$ Y_{N-1} $N-1$ Y_N N Y_t T

- \Box If the correlation is close to 0, $\frac{Y_1}{Y_2}$ 1 1 then there is no trend
	- The function to compute spearman correlation is cor() or the cor.test() from package "stats". The latter provides the significance of the coefficient

Dickey-Fuller Test

 \Box The first work on testing for a unit root in time series was done by Dickey and Fuller **White noise series** \square Consider the model Frend Stationary

$$
Y_t = a + \phi Y_{t-1} + \epsilon_t
$$

 \Box The objective is to test

 $\int_{U} H_0: \phi = 1$ (*i.e. contain a unit root*) H_1 : $|\phi| < 1$ (i.e. is stationary

 \Box More general case can include more lags, the so called Augmented Dickey-Fuller (ADF) test

Dickey-Fuller Test in R

\Box The ADF test in R is done with the command adf.test() from package "tseries"

Description

Computes the Augmented Dickey-Fuller test for the null that x has a unit root.

Usage

```
\text{adf.test}(x, \text{ alternative} = c("stationary", "explosive"),k = \text{trunc}((\text{length}(x)-1)^(1/3)))
```
Arguments

Summary of Stationary Tests

THANK YOU !

luana.marangon.lima@duke.edu

Nicholas School of the Environment - Duke University