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Learning Goals

¨ Trend Component

¤ Linear and Non-linear

¤ How to Estimate Linear Trend

¤ How to Model/Remove Linear Trend from a Series

¨ Seasonal Trend

¤ How to Estimate Seasonal Trend

¤ How to Model/Remove Seasonal Trend from a Series

¨ Stationarity Tests



Time Series Components

¨ A time series may have the following components:

Trend 
Component

Seasonal 
Component

Cyclical 
Component

Random 
Component

Decomposing the Time 
Series means separating 
trend/cycle, seasonal and 

random components.

TSA will find and 
exploit predictable 

patterns/components.



Causes of Variation in TS data

¨ Calendar: seasons, holidays, weekends
¨ Example

Video game usage over time – daily basis

Interest

• Trend of usage over time

• Popularity of games

• Weekly cycle of usage

Knowledge

• Usage up on the weekend and 
down during the week

• Increased usage during holidays

• Summer time: 
weekdays/weekends blend 
together



Causes of Variation in TS data

¨ Natural calamities: earthquake, epidemic, flood, 
drought

¨ Political movements or changes, policies, war
¨ Example

Source: https://fred.stlouisfed.org/series/GASREGW#



Trend Component



Trend Component

¨ Long-term tendency
¤ Increase (upward movement) or 
¤ Decrease (downward movement)

¨ Trend can be linear or non-linear

Ex: Upward Linear Trend Ex: Quadratic Trend



Non-linear Trend

Polynomial trend 
¨ Example: quadratic trend

𝑌! = 𝛽" + 𝛽#𝑇! + 𝛽$𝑇!$ + 𝜀!
¨ Or any other order

Exponential trend
𝑌! = (𝑒%!&%"'#)𝜀!

¨ Can be transformed into 
linear trend
ln 𝑌! = 𝛽" + 𝛽#𝑇! + ln 𝜀!

Most of the time we assume a linear trend to simplify the analysis



Linear Trend Component

¨ For a linear trend we can write
𝑌! = 𝛽" + 𝛽#𝑡! + 𝜀!

¨ Slope (𝛽#) and the intercept (𝛽") are the unknown 
parameters, and 𝜀! is the error term

The error term or residual 
is the distance from point 
𝑌! to the estimate )𝑌!

)𝑌! = 𝛽" + 𝛽#𝑡!

𝜀! = 𝑌! − )𝑌!



Linear Trend Estimation

¨ How do we estimate 𝛽" and 𝛽#?
¨ One approach: Least Squares Method

¤ We want to minimize 

𝑄 𝛽", 𝛽# =)
$%#

&

𝑌$ − (𝛽" + 𝛽#𝑡) '

¤ How de we minimize this function?
n By taking the partial derivatives of 𝑄 𝛽!, 𝛽" with respect 

to the coefficients 𝛽! e 𝛽"
n QR decomposition

We will use R to solve it!



Estimating Linear Trend in R

¨ The function for simple linear regression in R is the 
lm() from package ”stats”, where lm stands for “linear 
model”

¨ The arguments you will need to provide are

𝑙𝑚( 𝑌 ~ 𝑡)

Note: vectors Y and t should be in data frame format

Vector with 
observed series

Vector from 1 to number 
of observations of Y



Linear Trend Estimation and Removal

1. Model the trend: find 𝛽" and 𝛽#

2. For each observation 𝑡 remove trend

𝑌!"#$"%!# = 𝑌# − (𝛽& + 𝛽'𝑡)



Moving Average for Non-Linaer Trend 
Estimation

¨ Smooth out the trend with something like a rolling 
average
¤ A moving average trendline smooth out fluctuations in data 

to show a pattern or trend more clearly
¤ Which order to use for the moving average?

¨ Looking at the rolling 
average makes it easier 
to tell how the trend is 
moving underneath the 
noise



Example: Inflow Data



Amazon River Inflow in m3/s

Which components/patterns can you see in 
this series?



Trend visualization

𝑌012340 = 𝛽" + 𝛽#𝑡



Trend visualization

𝑌012340 = 𝛽" + 𝛽#𝑡

p-value > 0.05
Coefficient 𝜷𝟏 not significant



Linear vs Smoothed Trend

𝑌!"#$%! = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑌!&' + 𝑌!&( +⋯+ 𝑌! +⋯+ 𝑌!)( + 𝑌!)')



Do you still see any patterns?



Seasonal Component



Seasonal Component

¨ Short-term regular wave-like patterns
¤ Observed within 1 year - monthly or quarterly
¤ Equally spaced peaks and troughs Calendar 

Related

Peaks in the 
Summer months 

Jun/Jul/Ago



Seasonal Component Estimation

1. Smoothing the trend with a moving average
2. De-trend the series

¤ Additive Model
n take original series and subtract the smoothed trend

𝑌*#+*,$+- = 𝑌 − 𝑌!"#$%
¤ Multiplicative model

n scales the size of the seasonal component as the trend rises or 
falls

n take original series and divide the original data by the trend

𝑌*#+*,$+- =
.

.%&'()



Additive vs Multiplicative Model

¨ In the additive model the magnitude of seasonality does not 
change in relation to time

¨ In the multiplicative model the magnitude of the seasonal 
pattern depends on the magnitude/level of the data. 



Seasonal Trend Estimation (cont’d)

3. Assume the observed detrended series can be 
represented as 
𝑌+,-+./-0$ = 𝜇$ + 𝑋$ where 𝐸[𝑋$] = 0

¤ For monthly seasonal data assume 12 parameters such 
as

𝜇! =

𝛽" 𝑓𝑜𝑟 𝑡 = 1,13,25,⋯
𝛽# 𝑓𝑜𝑟 𝑡 = 2,14,26,⋯

⋮
𝛽"# 𝑓𝑜𝑟 𝑡 = 12,24,36,⋯

Seasonal 
Means Model



Seasonal Trend Estimation (cont’d)

4. Estimate the parameters 𝛽#, 𝛽', … 𝛽#'

Create dummies (categorical variables with 2 levels)

𝐷$,! = 21 𝑖𝑓 𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑠𝑒𝑎𝑠𝑜𝑛 𝑠
0 𝑜. 𝑤.

𝑓𝑜𝑟 𝑠 = 1,2, …12

At any time period t, one of the seasonal dummies 
D",& , D#,& ,…, D"#,& will equal 1, all the others will equal 0 



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
HP1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Jan-31 4782 1 0 0 0 0 0 0 0 0 0 0 0
Feb-31 7323 0 1 0 0 0 0 0 0 0 0 0 0
Mar-31 8266 0 0 1 0 0 0 0 0 0 0 0 0
Apr-31 6247 0 0 0 1 0 0 0 0 0 0 0 0
May-31 3642 0 0 0 0 1 0 0 0 0 0 0 0
Jun-31 2425 0 0 0 0 0 1 0 0 0 0 0 0
Jul-31 2158 0 0 0 0 0 0 1 0 0 0 0 0
Aug-31 1854 0 0 0 0 0 0 0 1 0 0 0 0
Sep-31 1839 0 0 0 0 0 0 0 0 1 0 0 0
Oct-31 1896 0 0 0 0 0 0 0 0 0 1 0 0
Nov-31 2095 0 0 0 0 0 0 0 0 0 0 1 0
Dec-31 2725 0 0 0 0 0 0 0 0 0 0 0 1
Jan-32 4679 1 0 0 0 0 0 0 0 0 0 0 0
Feb-32 5535 0 1 0 0 0 0 0 0 0 0 0 0
Mar-32 4310 0 0 1 0 0 0 0 0 0 0 0 0
Apr-32 3026 0 0 0 1 0 0 0 0 0 0 0 0
May-32 2185 0 0 0 0 1 0 0 0 0 0 0 0
Jun-32 1919 0 0 0 0 0 1 0 0 0 0 0 0
Jul-32 1640 0 0 0 0 0 0 1 0 0 0 0 0
Aug-32 1302 0 0 0 0 0 0 0 1 0 0 0 0
Sep-32 1118 0 0 0 0 0 0 0 0 1 0 0 0
Oct-32 1688 0 0 0 0 0 0 0 0 0 1 0 0
Nov-32 2040 0 0 0 0 0 0 0 0 0 0 1 0
Dec-32 3790 0 0 0 0 0 0 0 0 0 0 0 1
Jan-33 6928 1 0 0 0 0 0 0 0 0 0 0 0
Feb-33 5793 0 1 0 0 0 0 0 0 0 0 0 0
Mar-33 4276 0 0 1 0 0 0 0 0 0 0 0 0
Apr-33 3863 0 0 0 1 0 0 0 0 0 0 0 0
May-33 2498 0 0 0 0 1 0 0 0 0 0 0 0
Jun-33 1940 0 0 0 0 0 1 0 0 0 0 0 0
Jul-33 1725 0 0 0 0 0 0 1 0 0 0 0 0
Aug-33 1375 0 0 0 0 0 0 0 1 0 0 0 0
Sep-33 1324 0 0 0 0 0 0 0 0 1 0 0 0
Oct-33 1551 0 0 0 0 0 0 0 0 0 1 0 0
Nov-33 1724 0 0 0 0 0 0 0 0 0 0 1 0
Dec-33 3352 0 0 0 0 0 0 0 0 0 0 0 1
Jan-34 4049 1 0 0 0 0 0 0 0 0 0 0 0
Feb-34 3166 0 1 0 0 0 0 0 0 0 0 0 0
Mar-34 3124 0 0 1 0 0 0 0 0 0 0 0 0
Apr-34 2507 0 0 0 1 0 0 0 0 0 0 0 0
May-34 1853 0 0 0 0 1 0 0 0 0 0 0 0
Jun-34 1131 0 0 0 0 0 1 0 0 0 0 0 0
Jul-34 978 0 0 0 0 0 0 1 0 0 0 0 0
Aug-34 826 0 0 0 0 0 0 0 1 0 0 0 0
Sep-34 1026 0 0 0 0 0 0 0 0 1 0 0 0
Oct-34 1203 0 0 0 0 0 0 0 0 0 1 0 0
Nov-34 1199 0 0 0 0 0 0 0 0 0 0 1 0
Dec-34 1621 0 0 0 0 0 0 0 0 0 0 0 1

𝑌!"#!$%#&' = 𝛽(𝐷(,' + 𝛽*𝐷*,'+ 𝛽+𝐷+,'+ 𝛽,𝐷,,'+ 𝛽-𝐷-,'+ 𝛽.𝐷.,'+ 𝛽/𝐷/,' + 𝛽0𝐷0,'+ 𝛽1𝐷1,'+ 𝛽(2𝐷(2,'+ 𝛽(𝐷((,'+ 𝛽(*𝐷(*,'



Seasonal Trend Estimation (cont’d)

5. Write series 𝑌+,-+./-0 as a function of the 
dummies

𝑌2"324%35# =,
26'

'7

𝛽2𝐷2,#

6. Compute coefficients by linear regression



Estimating Seasonal Trend in R

¨ First create seasonal dummies using seasonaldummy()

from package ”forecast”

𝑑𝑢𝑚𝑚𝑖𝑒𝑠 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑑𝑢𝑚𝑚𝑦(𝑌)

¨ This will only work if Y is a time series object and if 

you specify frequency 

𝑌 = 𝑡𝑠(𝑌, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 12)

¨ Then just run a simple regression on the dummies

𝑙𝑚( 𝑌 ~ 𝑑𝑢𝑚𝑚𝑖𝑒𝑠, 𝑑𝑎𝑡𝑎)



Back to example: Inflow 



Detrended Series with 
Additive Model

𝑌42012340 = 𝑌0 − 𝑇𝑟𝑒𝑛𝑑0



Seasonal Component Visualization



Seasonal + Trend Decomposition



Stochastic versus deterministic trend



Series with Deterministic Trend

¨ Deterministic linear trend process
𝑌! = 𝛽" + 𝛽#𝑡! + 𝜀!

¨ Or more generally, for a polynomial trend

𝑌$ = 𝛽% + 𝛽&𝑇$ + 𝛽'𝑇$' +⋯+ 𝛽(𝑇$( + 𝜀$
¨ Detrending is accomplished by running a regression 

and obtaining the series of residuals. The residuals 
will give you the detrended series

¨ That’s what we call trend-stationarity



Series with Stochastic Trend

¨ But some series have what we call difference-

stationarity

¨ Although trend-stationary and difference-stationary 
series are both “trending” over time, the stationarity 
is achieved by a distinct procedure

¨ In the case of difference-stationarity, stationarity is 
achieved by differencing the series 

¨ Sometimes we need to difference the series more 
than once



Trend-stationarity vs difference-stationarity



Stationarity Tests



Stationarity Assessment

¨ Mann-Kendall Test– monotonic trend

¨ Spearman’s Rank Correlation Test – monotonic trend

¨ Dickey-Fuller (ADF) Test – unit root

¨ Phillips-Perron (PP) Test – unit root

¨ Kitawoski-Phillips-Schmidt-Shin (KPSS) – unit root

¨ And others...



Review: Hypothesis Testing

¨ Why do we use hypothesis testing?
¤ To analyze evidence provided by data

¤ To make decisions based on data

¨ What is a statistical hypothesis?
¤ An assumption about a population parameter that 

may or may not be true

¨ In Hypothesis Testing we usually have

F𝐻": 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠
𝐻#: 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠



Review: Hypothesis Testing (cont’d)

¨ Procedure

1. State the hypotheses and identify the claim

2. Find the critical value(s) from the appropriate table

3. Compute the test value

4. Make the decision to reject or not reject the null 
hypothesis

If P-value ≤ α, reject the null hypothesis. 
If P-value > α, do not reject the null 

hypothesis.



Mann-Kendall Test

¨ Commonly employed to detect deterministic trends 
in series of environmental data, climate data or 
hydrological data

¨ Cannot be applied to seasonal data 

¨ Hypothesis Test

2𝐻': 𝑌! 𝑖𝑠 𝑖. 𝑖. 𝑑. (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦)
𝐻": 𝑌! 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑡𝑟𝑒𝑛𝑑



Mann-Kendall Test

¨ Mann-Kendall statistic is

𝑆 = #
!"#

$%#

#
&"!'#

$

𝑠𝑔𝑛(𝑌& − 𝑌!)

where

𝑠𝑔𝑛 𝑌& − 𝑌! = +
1 𝑖𝑓 𝑌& − 𝑌! > 0
0 𝑖𝑓 𝑌& − 𝑌! = 0

−1 𝑖𝑓 𝑌& − 𝑌! < 0

¨ The test will check the magnitude of S and its significance 
based on the number of observations

¨ In other words, the bigger the number of observations the 
higher S will need to be 



Mann-Kendall Test

Mann-Kendall test statistic is

𝑆 = :
/01

2&1

:
30/)1

2

𝑠𝑔𝑛(𝑌3 − 𝑌/) → 𝑠𝑔𝑛 𝑌3 − 𝑌/ = @
1 𝑖𝑓 𝑌3 − 𝑌/ > 0
0 𝑖𝑓 𝑌3 − 𝑌/ = 0

−1 𝑖𝑓 𝑌3 − 𝑌/ < 0

𝐸 𝑆 = 0
Var 𝑆 = 𝜎*+ =

#
#,
𝑛(𝑛 − 1)(2𝑛 + 5)

𝜏 =
2𝑆

𝑁 𝑁 − 1

𝑍 =

(𝑆 − 1)
𝜎*

𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
(𝑆 + 1)
𝜎*

𝑖𝑓 𝑆 < 0

Under 𝐻", 𝑍 follow a standard normal distribution

Reject 𝐻" when 𝑍 < 𝑍G/$

I𝐻": 𝑌- 𝑖𝑠 𝑖. 𝑖. 𝑑. (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦)
𝐻#: 𝑌- 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑡𝑟𝑒𝑛𝑑



Mann-Kendall test in R

¨ The Mann-Kendall test in R is done with the command 
MannKendall() from package “Kendall”

¨ For seasonal data you can use SeasonalMannKendall() 
from the same package



Spearman’s Rank Correlation Coefficient

¨ Spearman’s correlation coefficient is a statistical 
measure of the strength of a monotonic relationship

¨ Unlike Pearson’s correlation,                           
the relationship does not need to be linear

¨ In other words, if one variable increases so do 
does the other, it does not matter the proportion 
of the increase



Spearman’s Rank Correlation Coefficient

¨ If the correlation is close to 0, 
then there is no trend𝑌# 1

𝑌+ 2
𝑌. 3
⋮ ⋮

𝑌/0+ 𝑁 − 2
𝑌/0# 𝑁 − 1
𝑌/ 𝑁

𝑌0 𝑇

¨ To verify a monotonic trend in your data, compute the 
spearman correlation between your data and series 𝑇

¨ The function to compute 
spearman correlation is cor() or 
the cor.test() from package 
”stats”. The latter provides the 
significance of the coefficient



Dickey-Fuller Test

¨ The first work on testing for a unit root in time series 
was done by Dickey and Fuller

¨ Consider the model

𝑌$ = 𝑎 + 𝜙𝑌$1# + 𝜖$
¨ The objective is to test

!
𝐻": 𝜙 = 1 (𝑖. 𝑒. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡)
𝐻#: |𝜙| < 1 𝑖. 𝑒. 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦

¨ More general case can include more lags, the so 
called Augmented Dickey-Fuller (ADF) test

White noise series   



Dickey-Fuller Test in R

¨ The ADF test in R is done with the command adf.test() 
from package “tseries”



Summary of Stationary Tests
Mann Kendall Spearman Correlation Augmented Dickey-Fuller

Check for deterministic trend Check for deterministic trend Check for stochastic trend

Hypothesis test Hypothesis test Hypothesis test

!𝐻!: 𝑌" 𝑖𝑠 𝑖. 𝑖. 𝑑. (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦)
𝐻#: 𝑌" 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑡𝑟𝑒𝑛𝑑 !𝐻!: 𝑌" 𝑖𝑠 𝑖. 𝑖. 𝑑. (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦)

𝐻#: 𝑌" 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑡𝑟𝑒𝑛𝑑 !
𝐻!: 𝜙 = 1 (𝑖. 𝑒. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡)
𝐻#: 𝜙 < 1 𝑖. 𝑒. 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦

Test statistic Test statistic Test statistic

Find

𝑆 = *
34(

56(

*
7438(

5

𝑠𝑔𝑛(𝑌7 − 𝑌3)

𝑠𝑔𝑛 𝑌7 − 𝑌3 = 1
1 𝑖𝑓 𝑌7 − 𝑌3 > 0
0 𝑖𝑓 𝑌7 − 𝑌3 = 0

−1 𝑖𝑓 𝑌7 − 𝑌3 < 0

Find the spearman correlation 
coefficient
𝜌 = 𝐶𝑜𝑟𝑟(𝑌;, 𝑇) where 𝑇 =
1,… ,𝑁
PS: spearman measure any type 
of monotonic relationship not only 
linear

Check if model

𝑌- = 𝜙𝑌-0# + 𝜖-

has a unit root i.e. 𝜙=1

Can’t handle seasonality, if 
working with seasonal data 
use Seasonal Mann Kendall 
instead or group data 

Can’t handle seasonality, if 
working with seasonal data 
use group data 

Can handle seasonality



THANK YOU !

luana.marangon.lima@duke.edu

Nicholas School of the Environment - Duke University


