

TIME SERIES ANALYSIS FOR ENERGY DATA

M2- Autocovariance and Autocorrelation Function

Prof. Luana Medeiros Marangon Lima, Ph.D.

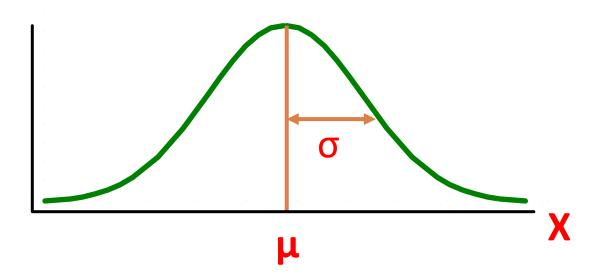
Nicholas School of the Environment - Duke University

Learning Goals

- Mean, Variance & Std. Deviation
- Stochastic Processes
- Autocovariance Function
- Autocorrelation Function (ACF)
- Stationary Process
- Partial Autocorrelation Function (PACF)

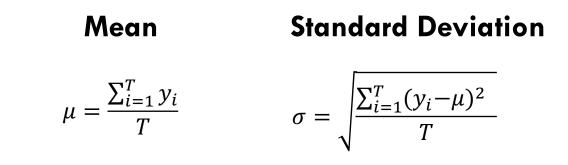
Mean, Variance and Stand. Deviation

- □ Mean is average of a group of numbers
- Variance is the average of squared differences from mean
- Standard Deviation measure how spread out are the numbers



Simple Sequence

□ Suppose we have a sequence of numbers $y_1, y_2, ..., y_T$



But what happens when we have a stochastic process ?

Stochastic Processes (Ch. 2 of Cryer and Shan)

- In this case instead of a simple sequence of variables, we have a random variable
- The sequence of random variable is called stochastic process and is a model for an observed time series
- When dealing with time series we talk about
 - Mean function
 - Variance fuction
 - Autocovariance function
 - Autocorrelation function

Because they are a function of time

Mean and Variance

The mean function is defined by

$$\mu_t = \mathrm{E}(\mathrm{Y}_t)$$

is the expected value of the process at time t

□ The variance is defined by

$$\sigma_t^2 = E(Y_t - \mu_t)^2 = E(Y_t^2) - \mu_t^2$$

Variance function explained

$$\sigma_t^2 = E(Y_t - \mu_t)^2 = E(Y_t^2 - 2Y_t\mu_t + \mu_t^2) = E(Y_t^2) - E(2Y_t\mu_t) + E(\mu_t^2)$$

But μ_t is a constant, therefore $E(\mu_t) = \mu_t$ and $E(\mu_t^2) = \mu_t^2$
 $\sigma_t^2 = E(Y_t^2) - 2\mu_t E(Y_t) + \mu_t^2$

Recall
$$E(Y_t) = \mu_t$$
, then
 $\sigma_t^2 = E(Y_t^2) - 2\mu_t\mu_t + \mu_t^2 = E(Y_t^2) - 2\mu_t^2 + \mu_t^2$
 $\sigma_t^2 = E(Y_t^2) - \mu_t^2$

Meaning of Autocorrelation Function

Recap: What is correlation?

From stats: covariance and correlation measure **joint variability** of two variables.

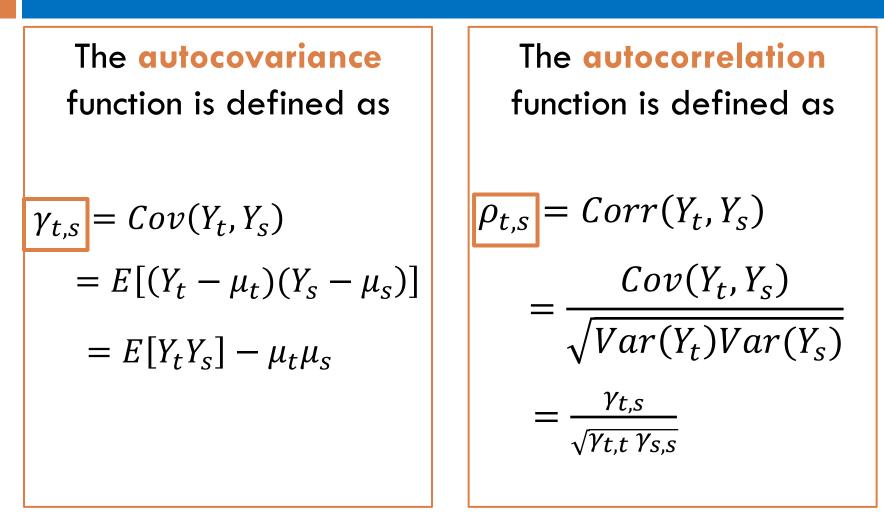
Meaning of Autocorrelation Function

Recap: What is correlation?

Is a measure of linear dependence between two variables

- In TSA: What is autocorrelation?
- Is a measure of dependence between two adjacent values of the same variables
- The prefix auto is to convey the notion of selfcorrelation, that is, correlation between variables from the same time series

Autocovariance & Autocorrelation Function



Autocovariance function explained

$$\gamma_{t,s} = E[(Y_t - \mu_t)(Y_s - \mu_s)]$$

= $E(Y_tY_s - Y_t\mu_s - Y_s\mu_t + \mu_t\mu_s)$
= $E(Y_tY_s) - \mu_s E(Y_t) - \mu_t E(Y_s) + \mu_t\mu_s$
= $E(Y_tY_s) - \mu_s\mu_t - \mu_t\mu_s + \mu_t\mu_s$
 \downarrow
 $\gamma_{t,s} = E(Y_tY_s) - \mu_s\mu_t$

Autocorrelation function explained

From stats, correlation between two variables X and Y is given by

$$\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Also from stats $Var(Y) = cov(Y, Y) = \gamma_{YY}$

$$\rho_{t,s} = \frac{cov(Y_t, Y_s)}{\sqrt{Var(Y_t)Var(Y_s)}} = \frac{\gamma_{t,s}}{\sqrt{\gamma_{t,t}\gamma_{s,s}}}$$

How to compute autocorrelation?

□ In the context of a single variable, Y_t is the original series and Y_s is a lagged version of the series

<i>Y</i> ₁	<i>Y</i> ₂
<i>Y</i> ₂	<i>Y</i> ₃
<i>Y</i> ₃	Y_4
Y_4	Y_5
:	:
Y_{N-3}	Y_{N-2}
Y_{N-2}	Y_{N-1}
Y_{N-1}	Y_N
Y_N	

 Y_{s}

 Y_t

Compute lag 1 autocorrelation

 $\rho_{t,s} = Corr(Y_t,Y_s)$

How to compute autocorrelation?

□ In the context of a single variable, Y_t is the original series and Y_s is a lagged version of the series

 Y_{s}

<i>Y</i> ₁	<i>Y</i> ₃
<i>Y</i> ₂	Y_4
<i>Y</i> ₃	Y_5
Y_4	<i>Y</i> ₆
:	:
Y_{N-3}	Y_{N-1}
Y_{N-2}	Y_N
Y_{N-1}	
Y_N	

 Y_t

Compute lag 2 autocorrelation

$$\rho_{t,s} = Corr(Y_t, Y_s)$$

Main Conclusion

Autocovariance and autocorrelation function give information about the dependence structure of a time series

Properties

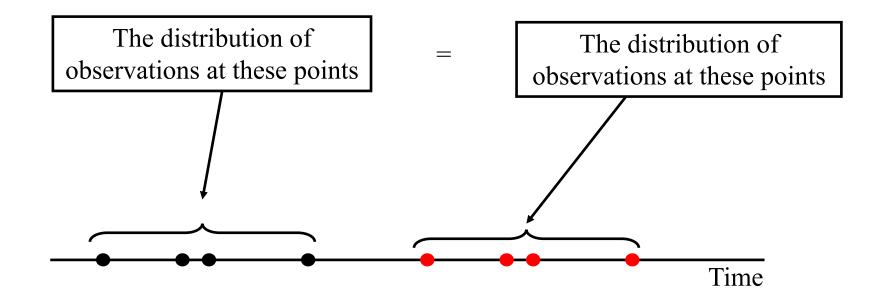
$\gamma_{t,t} = Var(Y_t)$	$ ho_{t,t}=1$
$\gamma_{t,s} = \gamma_{s,t}$	$\boldsymbol{\rho}_{t,s} = \boldsymbol{\rho}_{s,t}$
$ \gamma_{t,s} \leq \sqrt{\gamma_{t,t} \gamma_{s,s}}$	$\left \rho_{t,s} \right \leq 1$

Homework: try to understand why the six expressions in the table are true!!

- Values of $\rho_{t,s}$ close to ± 1 indicate strong linear dependence
- Values of *p_{t,s}* close to 0 indicate weak linear dependence
- \Box If $ho_{t,s} = 0$, then Y_t and Y_s are uncorrelated

Stationary Process

The basic idea of stationarity is that the probability laws that govern the behavior of the process do not change over time



Consequences of Stationarity

- Distribution of Y_t is the same of Y_{t-k} for all t and k
- Then,
 - $E(Y_t) = E(Y_{t-k})$ for all t and k so the mean function is constant for all time
 - $Var(Y_t) = Var(Y_{t-k})$ for all t and k so the variance is also constant over time

And what happens with the autocovariance function?

Consequences of Stationarity (cont'd)

□ If the process is stationary, then

$$\gamma_{t,s} = Cov(Y_t, Y_s) = Cov(Y_{t-k}, Y_{s-k})$$

For
$$k = s \rightarrow Cov(Y_t, Y_s) = Cov(Y_{t-s}, Y_0)$$

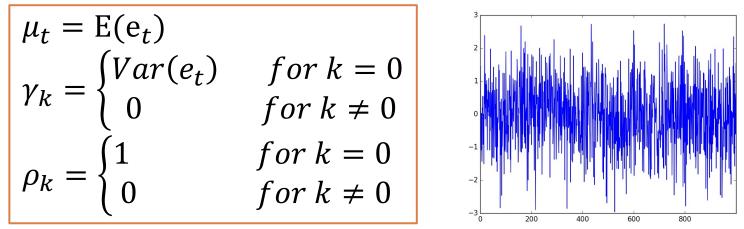
For
$$k = t \rightarrow Cov(Y_t, Y_s) = Cov(Y_0, Y_{s-t})$$

Thus,
$$\gamma_{t,s} = Cov(Y_0, Y_{|t-s|}) = \gamma_{0,|t-s|}$$

□ In other words, the covariance between Y_t and Y_s depends only on the time difference |t - s| and not on the actual times t and s

White Noise Series

- Example of a stationary process: white noise series
- □ The white noise series is a sequence of independent, identically distributed (i.i.d.) random variables $\{e_t\}$
- \Box { e_t } is a stationary process, then



In time series modeling we usually assume that the white noise process has mean zero and $Var(e_t) = \sigma_e^2$

Partial Autocorrelation Function

Recap: The ACF of a stationary process Y_t at lag h $\rho_{t,t-h} = Corr(Y_t, Y_{t-h})$

measures the linear dependency among the process variables Y_t and Y_{t-h} .

But the dependency structure among the intermediate variables

$$Y_t, Y_{t-1}, Y_{t-2}, \cdots, Y_{t-h+2}, Y_{t-h+1}, Y_{t-h}$$

also plays an important role on the value of the ACF.

Partial Autocorrelation Function (cont'd)

Imagine if you could **remove** the influence of all these intermediate variables...

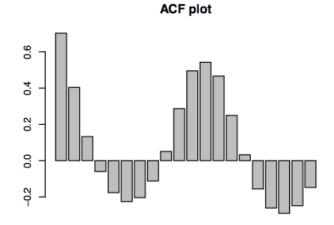
You would have only the directly correlation between Y_t and Y_{t-h}

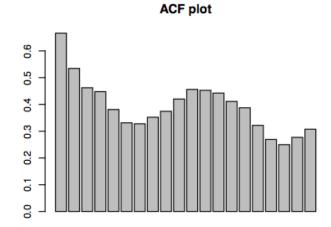
That's the so called **partial autocorrelation function** (PACF)

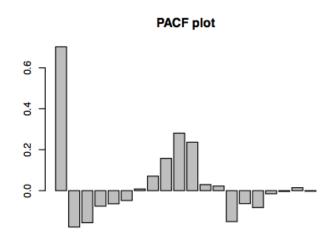
Partial Autocorrelation Function (cont'd)

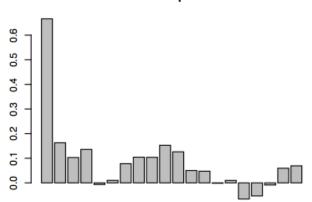
- □ The PACF is a little more difficult to compute
- We will talk about that later when we discuss the Yule Walker equations
- In summary:
 - The ACF and PACF measure the temporal dependency of a stochastic process
 - You will always build the ACF and PACF before fitting a model to a stochastic process
 - The ACF and PACF give us information about the autoregressive component of the series

Examples of ACF and PACF plots









PACF plot

THANK YOU !

luana.marangon.lima@duke.edu

Nicholas School of the Environment - Duke University