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Learning Goals

¨ Mean, Variance & Std. Deviation

¨ Stochastic Processes

¨ Autocovariance Function

¨ Autocorrelation Function (ACF)

¨ Stationary Process

¨ Partial Autocorrelation Function (PACF)



Mean, Variance and Stand. Deviation

¨ Mean is average of a group of numbers
¨ Variance is the average of squared differences from 

mean
¨ Standard Deviation measure how spread out are the 

numbers

Xμ

σ



Simple Sequence

¨ Suppose we have a sequence of numbers 
𝑦!, 𝑦", … , 𝑦#

¨ But what happens when we have a stochastic 
process ?

𝜇 =
∑!"#$ 𝑦!
𝑇 𝜎 =

∑!"#$ (𝑦!−𝜇)%

𝑇

Mean Standard Deviation



Stochastic Processes (Ch. 2 of Cryer and Shan)

¨ In this case instead of a simple sequence of 
variables, we have a random variable

¨ The sequence of random variable is called 
stochastic process and is a model for an observed 
time series

¨ When dealing with time series we talk about
¤ Mean function
¤ Variance fucntion
¤ Autocovariance function
¤ Autocorrelation function

Because they are a 
function of time



Mean and Variance

¨ The mean function is defined by

𝜇$ = E Y$

is the expected value of the process at time 𝑡

¨ The variance is defined by

𝜎$" = 𝐸 𝑌$ − 𝜇$ " = 𝐸 𝑌$" − 𝜇$"

*adapted from Ch. 2 of Cryer and Shan



Variance function explained

𝜎$" = 𝐸 𝑌$ − 𝜇$ " =
𝐸 𝑌$" − 2𝑌$𝜇$ + 𝜇$" =
𝐸 𝑌$") − 𝐸(2𝑌$𝜇$) + 𝐸(𝜇$"

But 𝜇! is	a	constant,	therefore	𝐸 𝜇! = 𝜇! and	𝐸 𝜇!" = 𝜇!"

𝜎$"=	𝐸(𝑌$") − 2𝜇$𝐸(𝑌$) + 𝜇$"

Recall	 𝐸(𝑌!) = 𝜇! ,	then
𝜎$"=	𝐸(𝑌$") − 2𝜇$𝜇$ + 𝜇$"=	𝐸(𝑌$") − 2𝜇$" + 𝜇$"
𝝈𝒕𝟐 = 𝑬 𝒀𝒕𝟐 − 𝝁𝒕𝟐

𝜇&%



Meaning of Autocorrelation Function

¨ Recap: What is correlation?

From stats: covariance and correlation measure joint 
variability of two variables.



Meaning of Autocorrelation Function

¨ Recap: What is correlation?
Is a measure of linear dependence between two 

variables

¨ In TSA: What is autocorrelation?
Is a measure of dependence between two adjacent 

values of the same variables

¨ The prefix auto is to convey the notion of self-
correlation, that is, correlation between variables 
from the same time series 



Autocovariance & Autocorrelation Function

The autocovariance
function is defined as

𝛾!,$ = 𝐶𝑜𝑣 𝑌! , 𝑌$
= 𝐸 𝑌! − 𝜇!)(𝑌$ − 𝜇$

= 𝐸 𝑌!𝑌$ − 𝜇!𝜇$

The autocorrelation
function is defined as

𝜌!,# = 𝐶𝑜𝑟𝑟 𝑌! , 𝑌#

=
𝐶𝑜𝑣 𝑌! , 𝑌#

𝑉𝑎𝑟 𝑌! 𝑉𝑎𝑟(𝑌#)

= $!,#
$!,! $#,#

*adapted from Ch. 2 of Cryer and Shan



Autocovariance function explained

𝛾$,( = 𝐸 𝑌$ − 𝜇$)(𝑌( − 𝜇(
= 𝐸 𝑌$𝑌( − 𝑌$𝜇( − 𝑌(𝜇$ + 𝜇$𝜇(
= 𝐸(𝑌$𝑌() − 𝜇(𝐸(𝑌$) − 𝜇$𝐸(𝑌() + 𝜇$𝜇(
= 𝐸(𝑌$𝑌() − 𝜇(𝜇$ − 𝜇$𝜇( + 𝜇$𝜇(

𝜸𝒕,𝒔 = 𝑬(𝒀𝒕𝒀𝒔) − 𝝁𝒔𝝁𝒕



Autocorrelation function explained

From	stats,	correlation	between	two	variables	X	
and	Y	is	given	by

𝜌*+ =
𝑐𝑜𝑣 𝑋, 𝑌
𝜎*𝜎+

Also	from	stats	𝑉𝑎𝑟 𝑌 = 𝑐𝑜𝑣 Y, Y = 𝛾++

𝜌$,( =
𝑐𝑜𝑣 𝑌$ , 𝑌(

𝑉𝑎𝑟 𝑌$ 𝑉𝑎𝑟(𝑌()
=

𝛾$,(
𝛾$,$𝛾(,(



How to compute autocorrelation?

¨ In the context of a single variable, 𝑌$ is the original 
series and 𝑌( is a lagged version of the series

𝑌# 𝑌% 𝑌'
𝑌% 𝑌' 𝑌(
𝑌' 𝑌( 𝑌)
𝑌( 𝑌) 𝑌*
⋮ ⋮ ⋮

𝑌+,' 𝑌+,% 𝑌+,#
𝑌+,% 𝑌+,# 𝑌+
𝑌+,# 𝑌+
𝑌+

𝑌& 𝑌- 𝑌-

Compute lag 1 autocorrelation

𝜌&,- = 𝐶𝑜𝑟𝑟 𝑌& , 𝑌-



How to compute autocorrelation?

¨ In the context of a single variable, 𝑌$ is the original 
series and 𝑌( is a lagged version of the series

𝑌# 𝑌% 𝑌'
𝑌% 𝑌' 𝑌(
𝑌' 𝑌( 𝑌)
𝑌( 𝑌) 𝑌*
⋮ ⋮ ⋮

𝑌+,' 𝑌+,% 𝑌+,#
𝑌+,% 𝑌+,# 𝑌+
𝑌+,# 𝑌+
𝑌+

𝑌& 𝑌- 𝑌-

Compute lag 2 autocorrelation

𝜌&,- = 𝐶𝑜𝑟𝑟 𝑌& , 𝑌-



Main Conclusion

Autocovariance and autocorrelation 
function give information about the 

dependence structure of a time series



Properties

𝜸𝒕,𝒕 = 𝑽𝒂𝒓(𝒀𝒕) 𝝆𝒕,𝒕 = 𝟏

𝜸𝒕,𝒔 = 𝜸𝒔,𝒕 𝝆𝒕,𝒔 = 𝝆𝒔,𝒕
𝜸𝒕,𝒔 ≤ 𝜸𝒕,𝒕 𝜸𝒔,𝒔 𝝆𝒕,𝒔 ≤ 𝟏

¨ Values of 𝝆𝒕,𝒔 close to ±1 indicate strong linear 
dependence  

¨ Values of 𝝆𝒕,𝒔 close to 0 indicate weak linear 
dependence  

¨ If 𝝆𝒕,𝒔 = 𝟎, then 𝒀𝒕 and 𝒀𝒔 are uncorrelated

Homework: try to 
understand why the 

six expressions in the 
table are true!!



Stationary Process

¨ The basic idea of stationarity is that the probability 
laws that govern the behavior of the process do not 
change over time 

Time

The distribution of 
observations at these points

The distribution of 
observations at these points

=



Consequences of Stationarity

¨ Distribution of 𝑌$ is the same of 𝑌$ , - for all 𝑡 and 𝑘
¨ Then,

¤ 𝐸(𝑌!) = 𝐸(𝑌! % &) for all 𝑡 and 𝑘 so the mean function 
is constant for all time 

¤ 𝑉𝑎𝑟(𝑌!) = 𝑉𝑎𝑟(𝑌! % &) for all 𝑡 and 𝑘 so the variance 
is also constant over time 

¨ And what happens with the autocovariance function?

*adapted from Ch. 2 of Cryer and Shan



Consequences of Stationarity (cont’d)

¨ If the process is stationary, then

¨ In other words, the covariance between 𝑌! and 𝑌#
depends only on the time difference |t − s| and not on 
the actual times t and s 

*adapted from Ch. 2 of Cryer and Shan

𝛾+,, = 𝐶𝑜𝑣 𝑌+, 𝑌, = 𝐶𝑜𝑣 𝑌+-., 𝑌,-.

For 𝑘 = 𝑠 → 𝐶𝑜𝑣 𝑌+, 𝑌, = 𝐶𝑜𝑣 𝑌+-,, 𝑌/

For 𝑘 = 𝑡 → 𝐶𝑜𝑣 𝑌+, 𝑌, = 𝐶𝑜𝑣 𝑌/, 𝑌,-+

Thus,                  𝛾+,, = 𝐶𝑜𝑣 𝑌/, 𝑌+-, = 𝛾/, +-,



White Noise Series

¨ Example of a stationary process: white noise series 
¨ The white noise series is a sequence of independent, 

identically distributed (i.i.d.) random variables {𝑒!}
¨ {𝑒!} is a stationary process, then

𝜇+ = E(e+)

𝛾. = 9𝑉𝑎𝑟 𝑒+ 𝑓𝑜𝑟 𝑘 = 0
0 𝑓𝑜𝑟 𝑘 ≠ 0

𝜌. = 91 𝑓𝑜𝑟 𝑘 = 0
0 𝑓𝑜𝑟 𝑘 ≠ 0

¨ In time series modeling we usually assume that the white 
noise process has mean zero and 𝑉𝑎𝑟 𝑒! = 𝜎%&

*adapted from Ch. 2 of Cryer and Shan



Partial Autocorrelation Function

Recap: The ACF of a stationary process 𝑌$ at lag ℎ
𝜌$,$,. = 𝐶𝑜𝑟𝑟(𝑌$ , 𝑌$,.)

measures the linear dependency among the process 
variables 𝑌$ and 𝑌$,..

But the dependency structure among the intermediate 
variables

𝑌$ , 𝑌$,!, 𝑌$,", ⋯𝑌$,./", 𝑌$,./!, 𝑌$,.
also plays an important role on the value of the ACF.



Partial Autocorrelation Function (cont’d)

Imagine if you could remove the influence 
of all these intermediate variables…

You would have only the directly correlation 
between 𝑌$ and 𝑌$,.

That’s the so called partial autocorrelation function 
(PACF)



Partial Autocorrelation Function (cont’d)

¨ The PACF is a little more difficult to compute
¨ We will talk about that later when we discuss the 

Yule Walker equations
¨ In summary:

¤ The ACF and PACF measure the temporal dependency 
of a stochastic process

¤ You will always build the ACF and PACF before fitting a 
model to a stochastic process

¤ The ACF and PACF give us information about the auto-
regressive component of the series



Examples of ACF and PACF plots
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